Session 2.1
Demand Analysis

Introductory Course on Economic Analysis of Investment Projects
Demand Analysis

• Critical to project success
• Methods of estimation
• Statistical projections
• Market surveys of potential customers
• Econometric modelling ‘contingent valuation’
Statistical projections

- Demand is a function of income, product price, competitors prices, taste/advertising.
- Simple projections based on income elasticity of demand and targeted/projected GDP growth.
- If elasticity is 1.2 then if GDP growth is 5% product demand growth is 6%.
Statistical projections

- Price can be included in a model where price elasticity is known or can be approximated.
- For transport:
 \[T_{xt} = (T_{x0} (1+g_t)^y) \times \frac{C_{xt}}{C_{x0}}^n \]
- Where \(T_{xt} \) is traffic flow (AADT) for type \(x \), \(t \) is a future year, \(0 \) is the base year, \(g \) is GDP per capita growth rate, \(y \) is income elasticity of demand, \(C \) is generalized travel costs including any toll payments, and \(n \) is a constant price elasticity.
Market surveys

- Can establish current expenditure patterns
- Contingent valuation (CV) surveys can be used to determine how much people would pay for good or service
- Also reveal what demand will be at a particular price
Generalized Travel Costs

Traffic

Demand

C1

C2

0

T1

T2
Willingness to pay

- Basis for consumer welfare change
- Used for economic analysis benefit valuation for non-traded goods
- Consumer surplus = WTP – actual payment
- Welfare triangle
Willingness to pay

- Important for tariff setting and used for benefit valuation in non-traded sectors
- CV surveys set bid price and establish if household will/will not use service/buy good at that price
- Probit model explains yes/no decision by set of variables relating to household characteristics, service quality and bid price
Mean willingness to pay

The probit model will be of the form \(Y = \alpha + \beta_1 X + \beta_2 B + \varepsilon \)

Where \(y \) is the yes/no response, \(X \) is a vector of variables reflecting household, area or other characteristics, \(B \) is the bid price and \(\varepsilon \) is an error term.

Mean WTP is derived from the expression

\[
(\sum (\beta_1 X^a) / \beta_2)^{-1}
\]

where \(X^a \) is the mean value of \(X \) variables.
Mean willingness to pay

- Where as illustrated below there is constant in the probit model (α) this must be added to the sum of the products to give ($\alpha + \sum(\beta_1 \times X^a)$) so that mean WTP becomes

$$\frac{(\alpha + \sum(\beta_1 \times X^a)}{\beta_2} \times 1.$$

eg below Mean WTP = RMB 7.18
Mean Willingness to Pay (MWTP) Calculation for Zhaoxian

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Mean</th>
<th>Coefficient*Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bid</td>
<td>-0.19779</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td>0.00002</td>
<td>24,501</td>
<td>0.48468</td>
</tr>
<tr>
<td>Education</td>
<td>-0.00826</td>
<td>10.60700</td>
<td>-0.08765</td>
</tr>
<tr>
<td>Gender</td>
<td>0.04213</td>
<td>0.49380</td>
<td>0.02080</td>
</tr>
<tr>
<td>Age</td>
<td>-0.01020</td>
<td>43.27100</td>
<td>-0.44149</td>
</tr>
<tr>
<td>Dwelling</td>
<td>0.11087</td>
<td>0.58058</td>
<td>0.06437</td>
</tr>
<tr>
<td>Yard</td>
<td>0.00146</td>
<td>121.68000</td>
<td>0.17805</td>
</tr>
<tr>
<td>Impact</td>
<td>-0.07108</td>
<td>4.38220</td>
<td>-0.31146</td>
</tr>
<tr>
<td>Squality</td>
<td>-0.12587</td>
<td>3.04340</td>
<td>-0.38307</td>
</tr>
<tr>
<td>Constant</td>
<td>1.89640</td>
<td></td>
<td>1.89640</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1.42062</td>
</tr>
<tr>
<td>Mean WTP</td>
<td></td>
<td></td>
<td>7.18249</td>
</tr>
</tbody>
</table>

Mean WTP \((1.42062/-0.19779)*-1 = 7.18248515 \)
Mean willingness to pay

- The same approach can be applied to derive mean WTP for specific target groups by replacing the average value for each variable X (for example RMB 24.5 for income above) with the specific X value for the group concerned (for example RMB 20 for the very poor).
Thank you