Modernization and Son Preference in People’s Republic of China

Robin Burgess and Juzhong Zhuang

September 2002
ERD Working Paper No. 20

MODERNIZATION AND SON PREFERENCE
IN PEOPLE’S REPUBLIC OF CHINA

Robin Burgess and Juzhong Zhuang

September 2002

Robin Burgess is a lecturer in the Department of Economics, London School of Economics. Juzhong Zhuang is a senior economist at the Regional Economic Monitoring Unit, Asian Development Bank. The authors are grateful to Sonia Balhotra, Tim Besley, Costas Meghir, John Muellbauer, and Adele Oliveri, and to participants of seminars in various institutions and conferences including the Annual Meeting of the American Economic Association in Atlanta in January 2002 for helpful discussions and comments. Thanks are also due to the Chinese State Statistical Bureau for providing the data used in the analysis. Robin Burgess wishes to thank the Suntory-Toyota International Center for Economics and Related Disciplines (STICERD) of the London School of Economics for financial assistance. Juzhong Zhuang wishes to thank STICERD for financial assistance at an early stage of this work. Views expressed in this paper do not necessarily reflect those of the authors’ affiliated organizations.
Foreword

The ERD Working Paper Series is a forum for ongoing and recently completed research and policy studies undertaken in the Asian Development Bank or on its behalf. The Series is a quick-disseminating, informal publication meant to stimulate discussion and elicit feedback. Papers published under this Series could subsequently be revised for publication as articles in professional journals or chapters in books.
Contents

Abstract vii

I. INTRODUCTION 1

II. SON PREFERENCE IN THE PRC 2

III. DATA 4

IV. GENDER BIASES IN HOUSEHOLD SPENDING 5
 A. Methodology 6
 B. Results 8

V. CORRESPONDENCE WITH WELFARE OUTCOMES 16

VI. DETERMINANTS OF SON PREFERENCE 21

VII. CONCLUSIONS 24

REFERENCES 25
Abstract

Gaps in welfare attainment between boys and girls in the People's Republic of China (PRC) have attracted international attention. In this paper demand analysis is used to discover the factors that may be driving the emergence of these gender gaps. Drawing on household expenditure data from a poor (Sichuan) and rich (Jiangsu) province we are able to test for different types of gender bias in intrahousehold allocation. Results show that spending on health is biased against young girls in the poor province but not in the rich province, and education spending is biased against older girls in both provinces. These biases in household spending were further found to correspond closely to gender biases in mortality and enrollment outcomes as revealed in census data for the same year. Split sample analysis indicates that poorer, less diversified households exhibit stronger biases against girls. Taken together, the results suggest that son preference in rural PRC is not driven solely by cultural factors, pointing to a potential role for public policy.
I. INTRODUCTION

Son preference is a well-known phenomenon in many low-income countries. What is less well understood is the extent to which economic factors influence preference for sons. People's Republic of China (PRC) is perhaps the country where son preference and the consequent problems of excess female mortality have attracted the most intense media attention and scrutiny. Academic analysis of this topic, however, has been largely confined to census data (Arnold and Zhaoxiang 1986, Zeng 1988, Zeng et al. 1993). This tells us little about whether son preference simply reflects embedded cultural norms or whether there is potential for it to be eroded by modernization. This also leaves us in the dark as to whether or not public policies will be effective in countering son preference.

This paper draws on household expenditure data to look more closely at these issues. We begin by examining whether we can detect gender-related biases in household spending in a rich (Jiangsu) and a poor (Sichuan) province. Since consumption by individuals is not observed in household expenditure data, our methods rely on detecting gender effects in the aggregate spending patterns of households. Engel and Rothbarth procedures developed by Deaton and Muellbauer (1986); Deaton, Ruiz-Castillo, and Thomas (1989); Deaton and Subramanian (1990); and Subramanian (1995) are used to test for differential parental valuation of sons versus daughters. These procedures involve unpacking demand equations to examine whether the presence of children of similar ages but of opposite sexes affects key areas of household spending differently.

We then go on to match our household data with census data for the same locations. This allows us to check whether gender-related biases in household spending correspond with gender biases in living standard outcomes (e.g., sex ratios, age-specific mortality, enrollment rates). We are aided in this respect by the fact that the national census in the PRC was carried out in 1990, the same year for which our household data were collected. We are thus able to build up a fairly complete picture of living standard outcomes in the two provinces and can check whether any biases in expenditures correspond to biases in outcomes. To our knowledge this represents the first attempt to undercover mechanisms that might underlie widely observed gender biases in welfare outcomes through direct observance of household demand behavior using large representative samples. Going the other way, the matching of census and expenditure data allows us to check whether widely implemented Engel and Rothbarth procedures are themselves capable of detecting discrimination.1 Examination of census data also

1 This is an issue as a range of studies employing these methods have failed to reveal significant evidence of gender biases in household spending despite the fact that measures of outcomes, drawn from census and other sources, show clear differences in welfare outcomes between boys and girls (see Deaton 1997 for a review).
allows us to examine potential areas of discrimination that are not discernible in expenditure data. An example is the possibility that parents adjust the sex ratio of surviving progeny prior to birth through selective abortion. Expenditure data is incapable of picking up discrimination against unborn children, thus inclusion of census results has value for exploring this potentially important form of son preference.

Since the onset of reforms in 1978, different parts of the PRC have experienced divergent rates of economic growth and market development. Our sample is designed to capture the two faces of modern PRC—Jiangsu, which has experienced rapid rates of diversification and growth; and Sichuan, which is considerably more backward and slower growing. In the final part of the paper we use subsamples created by splitting provincial samples according to equivalized consumption expenditure or share of off-farm income to check whether gender biases in intrahousehold allocation vary with the standard of living or degree of diversification of the household. Formally this analysis may be seen as a check on whether income or the composition of income enters into the sharing rule implemented by parents. This type of disaggregated analysis may provide further insights into whether son preference is driven by economic factors or whether it is simply a reflection of embedded cultural preferences (see Becker 1981). Taken together our results allow us to say something about whether modernization, as reflected in rising income and diversification, will improve the standing of female children vis-à-vis male children. This in turn has critical bearing on whether public policies that encourage growth and modernization have any power to reduce son preference or whether more specific, targeted policies will have to be designed.

II. SON PREFERENCE IN THE PRC

Son preference in the PRC has a long history. Culturally, son preference is part of deeply rooted Confucian values. One important element of the Confucian values is the male patriarch. According to the Book of Rites, “a woman is to obey her father before marriage, her husband during married life, and her son in widowhood” (Arnold and Liu 1986). These values explain the phenomenon of male dominance in family, community, and society in the PRC for thousands of years. One belief resulting from the male patriarch is that one needs to have sons to continue the family line. For instance, it is well known that only a male can come to the throne in monarchical PRC. Mencius, a prominent Confucian scholar who lived in the Warring State Period (403-221 BC), once said that to be without an heir was the most unfilial thing one could possibly do (Zhao 1997). This belief has been passed down from generation to generation, and is believed to have influenced fertility behavior in Chinese society even today.

Changing the overall budget constraint may change parental behavior toward children. The composition of income, however, may also be important. Reducing dependence on agriculture, for example, may alter the valuation of boys versus girls.
Son preference also has its economic explanations. For a long time, the PRC remained an agrarian society. Sons were considered an advantage in providing farm labor. Having sons was also considered as essential to ensure security in old age, as no formal arrangements of social security existed and family support for the elderly was the norm in the PRC during most of its thousand years’ history. The sayings, “more sons, more happiness and prosperity”, “producing sons to ensure security in old age”, and “married daughters are like splashed water” were popular expressions in the PRC until recently.

Since the Communist Party took power in 1949, the new Government introduced a number of measures to promote equality of males and females. First, the protection of rights of women and equal treatment of males and females were written into the Marriage Law. Second, during a number of cultural campaigns, including the Cultural Revolution, the male patriarch was criticized and discredited along with many other Confucian values. Third, women were encouraged to participate in the labor force and to get employed in the formal sector, especially in urban cities, and enterprises and government offices were asked to give equal opportunities to men and women in recruitment, promotion, and pay. The former Chinese Leader Mao Zedong once said, “women hold half of the sky.”

Economic conditions have also changed in favor of strengthening the position of women and girls over the last 50 years. There has been a rapid growth in the modern sectors and a dramatic decline in traditional farming. As a result, a large amount of rural labor has been transferred to the formal sector, especially in the coastal areas. A much greater number of men and women are entitled to some form of formal social security now compared to half a century ago.

Despite the Government’s conscious efforts to promote equality of male and females and the economic and structural changes in favor of women and girls, it is still not clear how these have changed parental values regarding sons and daughters. Empirical studies on this topic are still limited due to lack of data. Available academic analysis has been largely confined to census data. For instance, Arnold and Liu (1986), based on a One-Per-Thousand National Sample Fertility Survey in 1982, found strong evidence of son preference. Their study shows that couples with one daughter are less likely to have obtained a one-child certificate than couples with one son, and after receiving a certificate they are more likely to violate its provisions by having a second child. Couples without a son are less likely to use contraception than are couples with at least one son. Further, pregnant women without a son are less likely to have an abortion than are those with at least one son. They also found that, in general, son preference is weaker among more educated than less educated women and in more developed than less developed areas.
III. DATA

The data used in this paper are drawn from the 1990 Sichuan and Jiangsu provincial subsamples of the Rural Household Sample Survey conducted by the State Statistical Bureau (SSB). Each subsample covers one third of the counties within a province, 10 villages within a county, and 10 households within a village, selected by multistage random sampling. In 1990, the sample for Sichuan contained 5,380 households while the sample for Jiangsu contained 3,364 households. Urban household data for Sichuan in 1990 comprising 800 households is also used for the purpose of comparison (see Burgess, Zhu, and Yun 1996). Household data are matched and contrasted with rural and urban census data for Sichuan and Jiangsu drawn from the 1990 Population Census of China, which provides information on mortality and school enrollment rates broken down by sex and age, and sex ratios broken down by age (State Statistical Bureau 1992).

Sichuan and Jiangsu represent the two faces of modern PRC, the former being poorer, slower growing, highly agricultural, and located in the central interior of the country, whereas the latter is richer, faster growing, has a high degree of rural industrialization, and is located on the Eastern “miracle” coastal rim of the PRC. These contrasts enable us to derive a rich set of results on the interplay between modernization and son preference.

Two features of the rural household data sets differentiate it from standard practice and reduce the incidence of nonsampling errors. First, households are required to maintain cash and in-kind log books on a daily basis over the course of an entire year. Second, there is an elaborate system for collecting, checking, and processing the data. The concept of household expenditure used in this paper is the value of annual consumption of goods and services. Total household expenditure thus includes expenditure on food, tobacco, liquor, tea, clothing, articles for daily use, culture and recreation, fuel and power, health, education, housing and building, and transport and communication. The survey also collects information on household members, including their number, age, sex, occupation and education (see Table 1 for summary statistics of the main variables used in the analysis).

3 See Burgess and Wang (1995) for a full description of the rural data set (also see Chen and Ravallion 1996).
4 If we rank the rural sectors of PRC provinces according to per capita expenditure (PCE) in 1990, Jiangsu with 953 yuan is located near the top of the ranking while Sichuan with 569 yuan is located below the midpoint. Greater off-farm employment in Jiangsu partly accounts for these large differences. In Sichuan, 86.5 percent of the labor force is employed in agriculture and 3.9 percent in rural industry. In Jiangsu the corresponding proportions are 61.2 and 18.6 percent, respectively. The share of rural industry in total rural output is 26.9 percent for Sichuan and 60.4 percent for Jiangsu (see State Statistical Bureau 1990).
5 Data entry is supervised by a part-time resident enumerator. Regular monthly inspection of log books by county team staff adds another layer of checks to the system.
Section IV

Gender Biases in Household Spending

Table 1. Summary Statistics of Basic Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Rural Sichuan</th>
<th>Rural Jiangsu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log total expenditure</td>
<td>7.6762 (0.446)</td>
<td>8.0397 (0.562)</td>
</tr>
<tr>
<td>Log household size</td>
<td>1.4205 (0.327)</td>
<td>1.3651 (0.350)</td>
</tr>
<tr>
<td>Budget share of food</td>
<td>64.27 (11.130)</td>
<td>55.72 (15.033)</td>
</tr>
<tr>
<td>Budget share of calories</td>
<td>4.7446 (1.271)</td>
<td>3.4953 (1.643)</td>
</tr>
<tr>
<td>Budget share of health goods</td>
<td>2.0895 (2.997)</td>
<td>1.6069 (3.234)</td>
</tr>
<tr>
<td>Budget share of health services</td>
<td>0.4242 (1.155)</td>
<td>0.7926 (2.898)</td>
</tr>
<tr>
<td>Budget share of education goods</td>
<td>0.9659 (1.416)</td>
<td>0.5197 (1.211)</td>
</tr>
<tr>
<td>Budget share of education services</td>
<td>2.0894 (2.997)</td>
<td>1.6069 (3.274)</td>
</tr>
<tr>
<td>Budget share of cigarettes</td>
<td>2.1403 (1.983)</td>
<td>3.6797 (3.455)</td>
</tr>
<tr>
<td>Budget share of alcohol</td>
<td>2.2259 (1.770)</td>
<td>2.0970 (1.987)</td>
</tr>
<tr>
<td>Budget share of tea</td>
<td>0.1815 (0.427)</td>
<td>0.1156 (0.317)</td>
</tr>
<tr>
<td>Share of males aged 0-4</td>
<td>0.0353 (0.089)</td>
<td>0.0321 (0.086)</td>
</tr>
<tr>
<td>Share of females aged 0-4</td>
<td>0.0305 (0.085)</td>
<td>0.0274 (0.082)</td>
</tr>
<tr>
<td>Share of males aged 5-9</td>
<td>0.0367 (0.095)</td>
<td>0.0391 (0.100)</td>
</tr>
<tr>
<td>Share of females aged 5-9</td>
<td>0.0334 (0.091)</td>
<td>0.0302 (0.087)</td>
</tr>
<tr>
<td>Share of males aged 10-14</td>
<td>0.0530 (0.105)</td>
<td>0.0443 (0.103)</td>
</tr>
<tr>
<td>Share of females aged 10-14</td>
<td>0.0466 (0.101)</td>
<td>0.0383 (0.095)</td>
</tr>
<tr>
<td>Share of males aged 15-19</td>
<td>0.0848 (0.135)</td>
<td>0.0609 (0.120)</td>
</tr>
<tr>
<td>Share of females aged 15-19</td>
<td>0.0752 (0.124)</td>
<td>0.0481 (0.103)</td>
</tr>
<tr>
<td>Share of males aged 20-29</td>
<td>0.0780 (0.129)</td>
<td>0.0906 (0.140)</td>
</tr>
<tr>
<td>Share of females aged 20-29</td>
<td>0.0727 (0.121)</td>
<td>0.0838 (0.129)</td>
</tr>
<tr>
<td>Share of males aged 30-54</td>
<td>0.1756 (0.134)</td>
<td>0.1971 (0.145)</td>
</tr>
<tr>
<td>Share of females aged 30-54</td>
<td>0.1703 (0.120)</td>
<td>0.1848 (0.128)</td>
</tr>
<tr>
<td>Share of males aged 55 and over</td>
<td>0.0557 (0.122)</td>
<td>0.0579 (0.134)</td>
</tr>
<tr>
<td>Share of females aged 55 and over</td>
<td>0.0519 (0.111)</td>
<td>0.0646 (0.136)</td>
</tr>
<tr>
<td>Education level of household head</td>
<td>2.1563 (0.798)</td>
<td>2.4106 (0.943)</td>
</tr>
<tr>
<td>Share of off-farm income</td>
<td>0.1664 (0.215)</td>
<td>0.3076 (0.297)</td>
</tr>
<tr>
<td>Dummy for minority household</td>
<td>0.0576 (0.233)</td>
<td>0.0059 (0.077)</td>
</tr>
</tbody>
</table>

Note: Budget shares are expressed in percentages.

IV. GENDER BIASES IN HOUSEHOLD SPENDING

The time period we are interested in is when the spending decisions that affect children are under the direct control of parents. We therefore have in mind a unitary model of the household where intrahousehold allocation decisions are made jointly by the parents and children are passive recipients of such decisions. We abstract from the possibility that there may be disagreement between the parents regarding spending decisions (Thomas 1994) or that different household members influence allocation decisions to differing degrees (Browning and Chiappori 1996). We assume that parents have identical preferences and behave like a single unit.
A. Methodology

Intrahousehold allocation is not directly observed in the data as expenditure data is collected at the level of the household. Our methodology to detect gender biases in intrahousehold allocation depends on examining whether the presence of individuals of similar ages but of opposite sexes affects key areas of household spending differently. To look at these effects we use the familiar Working-Leser Engel form where different age classes \((n_j)\) have been broken down by gender so that separate \(\gamma_i\) coefficients for males and females can be calculated:

\[
 w_i = \alpha_i + \beta_i \ln x + \eta_i \ln n + \sum_{j=1}^{J-1} \gamma_{ij} (n_j/n) + \delta_i z + u_i
\]

Here \(w_i\) is the budget share of the \(i\)th commodity, \(x\) is total household expenditure, \(n\) is household size, \(\eta_i\) indicates whether there are economies of scale in the consumption of commodity \(i\), and \(z\) is a vector of variables that control for location (county dummies) and for relevant socioeconomic characteristics of the household. The test of gender bias we employ centers on whether the coefficients \(\gamma_{ij} = \gamma_{ik}\), where \(j\) and \(k\) reflect boys and girls in the same age group, respectively. This can be tested in a straightforward manner using an \(F\) test.

1. Engel Framework

In the Engel approach to identifying equivalence scales, households with similar budget shares (typically of food) but varying demographic composition are considered to have similar standards of living. By comparing across different age classes \((n_j)\) in (1) the costs of children relative to adults can be identified. Here we extend this analysis by examining gender-related demand effects within a given age class. If there is a pro-boy bias we would expect \(\gamma_j > \gamma_k\), where \(j\) and \(k\) reflect boys and girls in the same age group, respectively.

We focus on areas of spending where differential treatment of sons and daughters may have permanent and irreversible effects on their welfare as might be reflected in outcome data such as that from the 1990 census. Therefore we have selected food, calorie, health, and education shares as left hand side variables. Compared to the standard classification where adults are defined as the group aged 15–54, we have chosen a more disaggregated age breakdown. A total of seven age classes are thus

\[^6\] \(\beta\) is the expenditure elasticity; a positive value indicates a luxury and a negative value indicates a necessity.
\[^7\] \(\eta\) indicates whether there are economies of scale in the consumption of commodity \(i\).
\[^8\] Specifically, share of net income derived from off-farm employment (\(OFF\)) and education status of household head (\(EDU\)), whether in a minority region or not (\(MIN\)), can all affect demand and have thus been included as controls in the regressions.
distinguished, 0–4, 5–9, 10–14, 15–19, 20–29, 30–54, 55+, each of which are split by gender.9 This allows us to effectively broaden our analysis from issues of survival to differences in human capital investment. A finer demographic categorization, for example, enables us to check whether male and females aged 15–19 receive different levels of investments in education. Comparisons across age groups are also made more exact as there may be considerable heterogeneity in demands for food, calories, health, and education within the 15–54 age group.10

2. Rothbarth Framework

The second approach we follow is based on the intuition of Rothbarth (1943) that expenditures on adult goods (e.g., alcohol, tobacco) can be considered indicators of parental welfare. Given a fixed household budget, the addition of children can be modelled as a negative income effect (child costs displace adult good consumption) leading to a reduction of adult good expenditures and adult welfare (see Deaton 1997). If boys depress adult good consumption more than girls then this can be taken as an indicator of higher valuation of boys.

The validity of this framework rests on being able to find a set of goods that are consumed by adults only and for which there are no substitution effects of children. If adult goods can be identified and consumption of these goods can be interpreted as an indicator of adult welfare then one can test whether boys and girls have different income effects on adult goods consumption. In practice this is difficult because we can only find a few goods in our data sets that are consumed only by adults.11 In addition, the presence of children may affect consumption of these goods through substitution effects even when parents have been fully compensated for the costs of children.12

Deaton, Ruiz-Castillo, and Thomas (1989) proposed a procedure for testing separability between adult and nonadult consumption as a means of identifying adult goods. The procedure involves calculating the so-called outlay equivalent ratio, π_{ij}, from the coefficients estimated using adult good shares as left hand side variables in equation (1):

$$
\pi_{ij} = \frac{\hat{c}(p_iq_i)/\hat{c}n_j}{\hat{c}(p_iq_i) / \hat{c}x} = \frac{\left(\eta_i + \gamma_{ij}\right) - \sum_{j=1}^{J-1} \gamma_{ij} (n_j / n)}{\beta_i + w_i}
$$

9 This gives us a total of 14 demographic classes. Thirteen of these are run in each of the regressions with the 30–54 group excluded.

10 For instance, health demands may be particularly strong for women of child-bearing age. We chose to use the more homogenous 30–54 female group as our reference as it represents a group where reproduction has largely ceased and where health demands associated with old age have not fully set in. Demand for education is also likely to be uniformly low for this group.

11 Our prime candidates are alcohol and tobacco. We also use tea as this commodity is typically not consumed by children in the PRC. Other adult goods such as adult clothing and footwear are not available in our data.

12 Parents, for example, may consume less alcohol, tobacco, and tea outside the household when they have children due to child care considerations.
This ratio expresses the effect of an additional person in the \(j \)th age-sex category on consumption of the adult good in terms of the increase in total expenditure that produces the same change in expenditure on that commodity, written as a fraction of per capita expenditure (PCE). Therefore the outlay equivalent ratio of a female child for alcohol would be the fraction that PCE would have to be reduced to induce the same decrease in alcohol expenditure as would an additional female child (see Deaton 1997). If adult goods are correctly identified we would expect equivalent ratios for children to be (significantly) negative, which would suggest children having effects resembling reductions in income. With full separation and perfect correlation between adult goods it follows that these ratios should be the same for all adult goods. Wald tests can be used to check this and provide the basis for the selection of a valid set of adult goods.

If boys are favored over girls one would expect the \(\pi_{ij} \) for boys to be more negative than those for girls in the same age group. This would indicate higher valuation of boys versus girls. To formally test the equality of \(\pi \)-ratios one can return to equation (1) and test for the equality of \(\gamma \) coefficients on male and female children in a given age class using an \(F \) test. If there is a pro-boy bias we would expect \(\gamma_{ij} < \gamma_{ik} \), where \(j \) and \(k \) reflect boys and girls in the same age group.

B. Results

At each stage of the analysis, standard \(F \) tests were calculated comparing pooled and unpooled regressions for the two provinces. These tests rejected pooling confirming that the populations in the two provinces differ in their spending behavior. We exploit these differences both by working in a comparative framework and by examining directly how income levels and degree of diversification affect the gender effects we observe.

1. Engel Framework

In Tables 2 to 4 we present the Engel curve regressions employing equation (1) for food, calories, health, and education shares. \(F \) tests for the equality of \(\gamma \) coefficients are presented at the bottom of each of the tables.

a. Food and Calories

Food represents the key element in PRC rural budgets comprising 64.3 percent of the budget in Sichuan and 55.7 percent of the budget in Jiangsu (see Table 2). Demand patterns for food are similar across the two provinces—relative to the omitted female 30–54 category, children 0–4, 5–9, and 10–14 have a similar negative impact on the share of the household budget devoted to food. Coefficients on children of different sexes within these age classes, however, do not appear to be significantly different. This is confirmed by \(F \) tests reported at the
bottom of Table 2 where we can find no evidence of gender biases in spending on food in either province.

<table>
<thead>
<tr>
<th></th>
<th>Food</th>
<th>Calories</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sichuan</td>
<td>Jiangsu</td>
</tr>
<tr>
<td>Constant</td>
<td>194.216 (667.4)</td>
<td>210.072 (56.9)</td>
</tr>
<tr>
<td>ln(x)</td>
<td>-18.858 (-52.48)</td>
<td>-20.33 (-49.98)</td>
</tr>
<tr>
<td>ln(n)</td>
<td>14.307 (30.37)</td>
<td>13.262 (19.43)</td>
</tr>
<tr>
<td>M0-4</td>
<td>-11.919 (-6.337)</td>
<td>-18.104 (6.684)</td>
</tr>
<tr>
<td>F0-4</td>
<td>-10.825 (-5.706)</td>
<td>-15.456 (-5.655)</td>
</tr>
<tr>
<td>M5-9</td>
<td>-15.965 (-8.407)</td>
<td>-18.135 (-6.887)</td>
</tr>
<tr>
<td>F5-9</td>
<td>-12.886 (-6.797)</td>
<td>-19.923 (-6.944)</td>
</tr>
<tr>
<td>M10-14</td>
<td>-13.269 (-7.279)</td>
<td>-20.300 (-7.392)</td>
</tr>
<tr>
<td>F10-14</td>
<td>-15.334 (-8.430)</td>
<td>-17.558 (-6.512)</td>
</tr>
<tr>
<td>M15-19</td>
<td>-6.856 (-4.142)</td>
<td>-15.010 (-6.384)</td>
</tr>
<tr>
<td>F15-19</td>
<td>-4.727 (-2.843)</td>
<td>-11.919 (-4.609)</td>
</tr>
<tr>
<td>M20-29</td>
<td>-7.252 (-4.760)</td>
<td>-10.229 (-4.584)</td>
</tr>
<tr>
<td>F20-29</td>
<td>-3.314 (-2.446)</td>
<td>-6.418 (-3.120)</td>
</tr>
<tr>
<td>M30-54</td>
<td>-7.146 (-4.381)</td>
<td>-10.856 (-4.417)</td>
</tr>
<tr>
<td>M55+</td>
<td>-1.873 (-1.174)</td>
<td>-3.801 (-1.690)</td>
</tr>
<tr>
<td>F55+</td>
<td>-1.173 (-0.849)</td>
<td>-6.887 (-3.579)</td>
</tr>
<tr>
<td>EDU</td>
<td>-0.255 (-2.318)</td>
<td>0.078 (0.393)</td>
</tr>
<tr>
<td>OFF</td>
<td>-2.984 (-5.218)</td>
<td>-5.138 (-6.388)</td>
</tr>
<tr>
<td>MIN</td>
<td>3.163 (3.316)</td>
<td>-1.295 (-0.522)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Adjusted R²</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>0.461</td>
<td>0.567</td>
<td>0.672</td>
</tr>
<tr>
<td>Calories</td>
<td>64.268</td>
<td>55.709</td>
<td>4.744</td>
</tr>
</tbody>
</table>

F-tests:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>0.36</td>
<td>0.77</td>
<td>3.77</td>
</tr>
<tr>
<td>5-9</td>
<td>3.12</td>
<td>0.37</td>
<td>0.04</td>
</tr>
<tr>
<td>10-14</td>
<td>1.90</td>
<td>1.10</td>
<td>2.05</td>
</tr>
</tbody>
</table>

Note: t-statistics in parentheses.

As an alternative test we can look at how children of different sexes affect demand for calories as opposed to demand for food. If girls exert a more negative influence on household calorie demands than boys then this can be taken as an indication that boys are valued more highly. Using calories directly may be advisable as food expenditures embody price variation, which may not be relevant to the nutritional status of children—higher costing foods do not necessarily convey greater nutritional value than lower costing foods. Indeed, demographic effects on calorie demand revealed in Table 2 appear more reasonable than those for food share: coefficients increase with age across the three child groups (0–4, 5–9, 10–14), signalling increases in calorie needs and convergence toward the needs of the omitted adult reference

In place of food share we use a calorie share measure defined as household calorie consumption divided by household total expenditure.
group. Despite this we are unable to discern any significant difference in the magnitude of coefficients for male and female children as is confirmed by the F tests shown at the bottom of Table 2. There is no evidence of a bias against girls in the allocation of calories within the household. Taken together the food and calorie results would suggest that parents do not engage in selective underfeeding of female children.

This result is common to a number of other studies (see Deaton 1997 for a review). One explanation might be that because PRC households obtain the bulk of their food and calorie requirements from home production, they may be less inclined to exercise discretion in the allocation of this component of consumption. Universal and egalitarian access to land may also imply that parents feel less constrained in meeting food as opposed to nonfood consumption needs. A final reason suggested by Ahmad and Morduch (1993) is that there may be two-stage budgeting in food allocations. Parents may not change their food buying or production decisions if they have a boy or a girl but they might allot different portions or higher quality foods to sons rather than daughters. These effects will not necessarily show up in tests that focus on the allocation of total food or calories.

b. Health and Education

Within health and education categories we distinguish between goods and services as these are distributed through different channels, the former primarily through the market and the latter primarily through public institutions (see World Bank 1992, Bloom 1994). Results for estimated health Engel curves are shown in Table 3. Health expenditures, and in particular health services, are characterized by relatively low budget shares. Positive coefficients on total expenditure (β) suggest that both health goods and services represent luxuries in both provinces. Patterns of demand for health goods and services are similar across provinces. Demands are highest for the young child groups (0–4, 5–9), for child-bearing women (F20–29), and for the elderly (55+). If we focus our attention on the 0–4 age group where mortality is highest, we see that boys appear to receive more health goods than girls in Sichuan but not in Jiangsu. F tests shown at the bottom of Table 3 confirm that this difference is statistically significant. We therefore have strong and direct evidence of there being a significant bias against girls 0–4 in the allocation of health goods in Sichuan but not in Jiangsu. The fact that this form of discrimination is absent in Jiangsu according to these tests raises the intriguing possibility that it may have been eroded by modernization. Modernization as reflected in rising incomes and off-farm diversification seems to exert an equalizing influence as regards the allocation of health goods across young boys and girls. These results are striking, in particular as studies in other countries using the Engel method have on the whole failed to pick up any gender bias in spending on food or health, even in countries where health outcome data (e.g.,

14 Health services have budget shares in the order of 0.5 percent in our two provinces whereas Subramanian (1995) reports medical service shares in the region of 3–5 percent for Indian states. This partly reflects the subsidized nature of health services in rural PRC.
sex ratios, mortality rates, anthropometrics) were strongly suggestive of gender bias. Our finding therefore should be taken as strong evidence of the existence of a pro-boy bias in the allocation of health good expenditures in the poorer province.

Table 3. **Health Engel Curves, 1990**

<table>
<thead>
<tr>
<th>Health Goods</th>
<th>Health Services</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sichuan</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.108 (1.025)</td>
</tr>
<tr>
<td>ln(x)</td>
<td>0.483 (3.774)</td>
</tr>
<tr>
<td>ln(n)</td>
<td>-0.481 (-2.865)</td>
</tr>
<tr>
<td>M0-4</td>
<td>2.002 (2.989)</td>
</tr>
<tr>
<td>F0-4</td>
<td>0.419 (0.621)</td>
</tr>
<tr>
<td>M5-9</td>
<td>0.709 (1.049)</td>
</tr>
<tr>
<td>F5-9</td>
<td>0.325 (0.477)</td>
</tr>
<tr>
<td>M10-14</td>
<td>-0.729 (-1.123)</td>
</tr>
<tr>
<td>F10-14</td>
<td>-0.959 (-1.481)</td>
</tr>
<tr>
<td>M15-19</td>
<td>-1.077 (-1.827)</td>
</tr>
<tr>
<td>F15-19</td>
<td>-0.413 (-0.697)</td>
</tr>
<tr>
<td>M20-29</td>
<td>-1.282 (-2.363)</td>
</tr>
<tr>
<td>F20-29</td>
<td>0.363 (0.635)</td>
</tr>
<tr>
<td>M30-54</td>
<td>-0.006 (-0.010)</td>
</tr>
<tr>
<td>M55+</td>
<td>0.740 (1.302)</td>
</tr>
<tr>
<td>F55+</td>
<td>1.233 (2.506)</td>
</tr>
<tr>
<td>EDU</td>
<td>0.056 (1.030)</td>
</tr>
<tr>
<td>OFF</td>
<td>0.223 (1.094)</td>
</tr>
<tr>
<td>MIN</td>
<td>-1.252 (-3.686)</td>
</tr>
</tbody>
</table>

| Adj R^2 | 0.058 | 0.026 | 0.026 | 0.045 |
| Mean w_i | 2.089 | 1.609 | 0.424 | 0.793 |

F-tests:

<table>
<thead>
<tr>
<th></th>
<th>0-4</th>
<th>5-9</th>
<th>10-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>6.07</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5-9</td>
<td>0.41</td>
<td>0.43</td>
<td>0.04</td>
</tr>
<tr>
<td>10-14</td>
<td>0.19</td>
<td>0.17</td>
<td>1.10</td>
</tr>
</tbody>
</table>

Note: t-statistics in parentheses.

We could find no evidence of gender discrimination in the allocation of spending on health services in either province. The fact that health services were highly subsidized in 1990, however, does imply that our method may have limited power to detect discrimination. Also, if clinical consultation is not costly, whereas drugs and other health goods need to be purchased in the market, son preference may be expressed more in decisions to purchase health goods as

15 See Deaton (1989) for Thailand and Cote d’Ivoire; Ahmad and Morduch (1993) for Bangladesh; Subramanian and Deaton (1990) and Subramanian (1995) for India; Rudd (1993) for Taipei, China; and Deaton (1997) for Pakistan.

16 The correspondence of our results with census health outcome data will be checked in Section V.

17 This is reflected in the fact that health service budget shares are much lower than those for health goods (see Table 3).
opposed to decisions to attend health clinics. Our decision to run separate regressions for health goods and services is thus validated. This has not been done in the bulk of other studies.18

\begin{table}
\centering
\begin{tabular}{lccc}
\hline
 & \textbf{Education Goods} & \textbf{Education Service} \\
 & Sichuan & Jiangsu & Sichuan & Jiangsu \\
\hline
\textbf{Constant} & 0.574 (1.341) & 1.734 (4.233) & -0.232 (-0.239) & 2.693 (3.031) \\
\textsc{ln}(x) & -0.108 (-2.020) & -0.238 (-5.162) & 0.083 (0.686) & -0.318 (-3.182) \\
\textsc{ln}(n) & 0.296 (4.222) & 0.282 (3.715) & 0.323 (2.034) & 0.633 (3.844) \\
\textbf{M0–4} & -0.605 (-2.162) & -0.021 (-0.071) & -2.145 (-3.385) & -1.293 (-1.983) \\
\textbf{F0–4} & -0.562 (-1.992) & -0.344 (-1.134) & -1.696 (-2.654) & -0.722 (-1.097) \\
\textbf{M5–9} & 2.310 (8.179) & 0.900 (2.961) & 2.706 (4.231) & 2.813 (4.266) \\
\textbf{F5–9} & 2.294 (8.073) & 1.292 (4.056) & 3.450 (5.362) & 2.962 (4.287) \\
\textbf{M10–14} & 3.844 (14.181) & 2.628 (8.623) & 5.565 (9.065) & 5.906 (8.936) \\
\textbf{F10–14} & 3.411 (12.612) & 2.859 (9.474) & 5.125 (8.367) & 5.299 (8.098) \\
\textbf{M15–19} & 0.770 (3.127) & 1.229 (4.413) & 1.933 (3.468) & 3.292 (5.451) \\
\textbf{F15–19} & 0.578 (2.339) & 0.630 (2.193) & 0.361 (0.644) & 2.192 (3.521) \\
\textbf{M20–29} & -0.758 (-3.346) & -0.208 (-0.837) & -2.297 (-4.476) & -1.397 (-2.599) \\
\textbf{F20–29} & -0.515 (-2.553) & -0.339 (-1.483) & -0.531 (-1.163) & -0.872 (-1.757) \\
\textbf{M30–54} & 0.446 (-1.881) & -0.193 (-0.748) & -1.334 (-2.501) & -0.507 (0.907) \\
\textbf{F55+} & -0.366 (-1.778) & -0.059 (-0.275) & -1.184 (-2.544) & -0.789 (-1.702) \\
\textbf{EDU} & 0.419 (6.552) & 0.044 (1.992) & 0.218 (4.243) & 0.168 (3.495) \\
\textbf{OFF} & 0.267 (3.138) & -0.196 (-2.201) & 0.304 (1.580) & -0.561 (-2.899) \\
\textbf{MIN} & -0.201 (-1.415) & -0.045 (-0.162) & -0.230 (0.717) & 0.451 (0.754) \\
\hline
\textbf{Adj R}2 & 0.264 & 0.179 & 0.180 & 0.231 \\
\textbf{Mean } w\textsubscript{i} & 0.966 & 0.521 & 1.821 & 1.403 \\
\textbf{F}-tests:} & & & & \\
\textbf{0–4} & 0.03 & 1.02 & 0.55 & 0.53 \\
\textbf{5–9} & 0.00 & 1.54 & 1.71 & 0.04 \\
\textbf{10–14} & 3.78 & 0.62 & 0.76 & 1.04 \\
\textbf{15–19} & 1.16 & 6.07 & 15.33 & 4.74 \\
\hline
\end{tabular}
\caption{\textbf{Education Engel Curves, 1990}}
\end{table}

Note: \textit{t}-statistics in parentheses.

The education Engel curve results are shown in Table 4. Shares of education services (e.g., tuition fees) are higher than those for education goods (e.g., books etc). On the whole education goods seem to represent necessities although the pattern is mixed for education services. Demand for education across age groups is similar across the two provinces and is concentrated in the 5–9, 10–14, and 15–19 age groups, being strongest for the 10–14 group.19

18 The fact we do not obtain significant evidence of discrimination when running health spending as an aggregate (in both our samples) suggests that failure to distinguish between these two elements of health expenditure may underlie some of the inconclusive results reported in the literature (see Deaton 1997 for a review).

19 One noticeable difference is that demand for education services appears to be much more pronounced in the 15–19 age group for Jiangsu. The higher coefficients in the 10–14 relative to the 5–9 group reflect both higher costs of secondary relative to primary education and the fact that primary school does not begin until children are aged 7.
There is evidence of a pro-boy bias in the allocation of education goods in the 10–14 age group in Sichuan and in the 15–19 age group in Jiangsu. In both provinces we find a significant bias against females in the allocation of spending on education services in the 15–19 age group. This difference is more pronounced for Sichuan suggesting that the bias against girls may be stronger in the poorer province. Overall the results suggest that biases against girls with regard to investments in human capital occur earlier and are more pronounced in the poorer province. Our results suggest that modernization may be playing some role in eroding gender biases in education spending. A more disaggregated age breakdown has thus proven useful for pinpointing the incidence of gender bias in particular for older children and young adults.

2. **Rothbarth Framework**

Table 6 reports the outlay equivalent ratios calculated using equation (2) from the regression results obtained from running equation (1) using alcohol, tobacco, and tea budget shares (Table 5). If the adult goods we have selected are valid we would expect them to give similar estimates of the cost of children. To check this we report in Table 7 Wald tests of the equality of outlay equivalent ratios across our three adult goods for each age-sex group (see Deaton 1987, 1989). These tests indicate that the hypothesis of equality cannot be rejected for any group in Jiangsu and therefore our choice of adult goods would appear to be validated. For Sichuan, however, results are much more mixed, with equality being rejected for both males and females in the 10–14 age group. These rejections, which are by no means uncommon in the literature, highlight the practical limitations of the Rothbarth method. Not only is it often extremely difficult to ex ante identify potential adult goods but these same goods ex post often turn out not to possess the characteristics that would make them suitable for testing for gender biases.

In Table 6 we observe that outlay equivalent ratios are negative for most child groups, suggesting that children do exert a negative effect on the consumption of adult goods. The (absolute) size of the ratios also tend to increase with age as would be expected given that older children are likely to place greater demands on the household budget. The size of these effects tends to be greater for poorer Sichuan than richer Jiangsu. Ratios also tend to be more negative for male as opposed to female children aged 5–9 or 10–14 in Sichuan, whereas in Jiangsu no clear pattern emerges. To test whether these ratios are significantly different from zero, we calculated their asymptotic standard errors and \(t\) statistics using the delta method suggested by Subramanian (1995), for example, finds evidence of gender bias against girls in education in the 15–54 age group in all of the five Indian states he examines with the exception of the Punjab. Ahmad and Morduch (1993) find the same result for the 17–54 age class in Bangladesh. Neither study, however, is able to ascertain the exact incidence of gender bias given that such broad classifications of adults are employed.
Deaton (1987). In Sichuan we observe significant outlay ratios mainly for older male children, whereas in Jiangsu all outlay equivalent ratios are insignificantly different from zero.

<table>
<thead>
<tr>
<th></th>
<th>Alcohol</th>
<th>Tobacco</th>
<th>Tea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sichuan</td>
<td>Jiangsu</td>
<td>Sichuan</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.795</td>
<td>5.087</td>
<td>-6.097</td>
</tr>
<tr>
<td></td>
<td>(-1.404)</td>
<td>(7.388)</td>
<td>(-9.409)</td>
</tr>
<tr>
<td>$\ln(x)$</td>
<td>0.365</td>
<td>-0.269</td>
<td>0.957</td>
</tr>
<tr>
<td></td>
<td>(5.192)</td>
<td>(-3.492)</td>
<td>(11.893)</td>
</tr>
<tr>
<td>$\ln(n)$</td>
<td>-0.266</td>
<td>-0.159</td>
<td>-0.912</td>
</tr>
<tr>
<td></td>
<td>(-2.873)</td>
<td>(-1.257)</td>
<td>(-8.602)</td>
</tr>
<tr>
<td>$M0-4$</td>
<td>-0.303</td>
<td>0.239</td>
<td>1.678</td>
</tr>
<tr>
<td></td>
<td>(-0.827)</td>
<td>(0.484)</td>
<td>(3.994)</td>
</tr>
<tr>
<td>$F0-4$</td>
<td>-0.504</td>
<td>0.129</td>
<td>2.083</td>
</tr>
<tr>
<td></td>
<td>(-1.359)</td>
<td>(0.256)</td>
<td>(4.903)</td>
</tr>
<tr>
<td>$M5-9$</td>
<td>-0.587</td>
<td>0.524</td>
<td>1.022</td>
</tr>
<tr>
<td></td>
<td>(-1.576)</td>
<td>(1.042)</td>
<td>(2.399)</td>
</tr>
<tr>
<td>$F5-9$</td>
<td>-0.319</td>
<td>-0.429</td>
<td>1.277</td>
</tr>
<tr>
<td></td>
<td>(-0.851)</td>
<td>(-8.11)</td>
<td>(2.978)</td>
</tr>
<tr>
<td>$M10-14$</td>
<td>-0.880</td>
<td>-0.138</td>
<td>0.272</td>
</tr>
<tr>
<td></td>
<td>(-2.454)</td>
<td>(-0.271)</td>
<td>(0.662)</td>
</tr>
<tr>
<td>$F10-14$</td>
<td>-0.406</td>
<td>0.412</td>
<td>0.571</td>
</tr>
<tr>
<td></td>
<td>(-1.135)</td>
<td>(0.819)</td>
<td>(1.396)</td>
</tr>
<tr>
<td>$M15-19$</td>
<td>-0.390</td>
<td>-0.257</td>
<td>0.357</td>
</tr>
<tr>
<td></td>
<td>(-1.200)</td>
<td>(-0.554)</td>
<td>(0.959)</td>
</tr>
<tr>
<td>$F15-19$</td>
<td>-0.694</td>
<td>-0.398</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>(-2.123)</td>
<td>(-0.832)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>$M20-29$</td>
<td>0.909</td>
<td>0.880</td>
<td>1.945</td>
</tr>
<tr>
<td></td>
<td>(3.036)</td>
<td>(2.126)</td>
<td>(5.672)</td>
</tr>
<tr>
<td>$F20-29$</td>
<td>-0.139</td>
<td>0.401</td>
<td>0.744</td>
</tr>
<tr>
<td></td>
<td>(-0.521)</td>
<td>(1.053)</td>
<td>(2.437)</td>
</tr>
<tr>
<td>$M30-54$</td>
<td>0.834</td>
<td>1.230</td>
<td>1.882</td>
</tr>
<tr>
<td></td>
<td>(2.604)</td>
<td>(2.684)</td>
<td>(5.132)</td>
</tr>
<tr>
<td>$M55+$</td>
<td>1.436</td>
<td>1.645</td>
<td>0.930</td>
</tr>
<tr>
<td></td>
<td>(4.585)</td>
<td>(3.848)</td>
<td>(2.593)</td>
</tr>
<tr>
<td>$F55+$</td>
<td>0.424</td>
<td>0.039</td>
<td>0.603</td>
</tr>
<tr>
<td></td>
<td>(1.562)</td>
<td>(0.109)</td>
<td>(1.939)</td>
</tr>
<tr>
<td>EDU</td>
<td>-0.015</td>
<td>-0.105</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>(-0.476)</td>
<td>(-2.955)</td>
<td>(2.548)</td>
</tr>
<tr>
<td>OFF</td>
<td>0.177</td>
<td>0.330</td>
<td>0.844</td>
</tr>
<tr>
<td></td>
<td>(1.564)</td>
<td>(2.412)</td>
<td>(6.504)</td>
</tr>
<tr>
<td>MIN</td>
<td>2.166</td>
<td>0.462</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>(11.548)</td>
<td>(0.408)</td>
<td>(0.399)</td>
</tr>
<tr>
<td>Adj R^2</td>
<td>0.177</td>
<td>0.143</td>
<td>0.141</td>
</tr>
<tr>
<td>ω</td>
<td>2.226</td>
<td>2.100</td>
<td>2.140</td>
</tr>
</tbody>
</table>

Note: t-statistics in parentheses.
Table 6. Outlay Equivalent Ratios of Adult Goods for Different Child Age Groups

<table>
<thead>
<tr>
<th></th>
<th>0-4 Male</th>
<th>0-4 Female</th>
<th>5-9 Male</th>
<th>5-9 Female</th>
<th>10-14 Male</th>
<th>10-14 Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sichuan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol</td>
<td>-0.2546</td>
<td>-0.3321*</td>
<td>-0.3646*</td>
<td>-0.2611</td>
<td>-0.4773*</td>
<td>-0.2941</td>
</tr>
<tr>
<td></td>
<td>(-1.314)</td>
<td>(-1.697)</td>
<td>(-1.821)</td>
<td>(-1.304)</td>
<td>(-2.474)</td>
<td>(-1.527)</td>
</tr>
<tr>
<td>Tobacco</td>
<td>-0.0475</td>
<td>0.0835</td>
<td>-0.2572</td>
<td>-0.1750</td>
<td>-0.5038*</td>
<td>-0.4067*</td>
</tr>
<tr>
<td></td>
<td>(-0.256)</td>
<td>(0.446)</td>
<td>(-1.337)</td>
<td>(-0.910)</td>
<td>(-2.716)</td>
<td>(-2.194)</td>
</tr>
<tr>
<td>Tea</td>
<td>-0.4600</td>
<td>-0.4629</td>
<td>-0.5464</td>
<td>-0.4493</td>
<td>-0.7089*</td>
<td>-0.5636</td>
</tr>
<tr>
<td></td>
<td>(-1.177)</td>
<td>(-1.173)</td>
<td>(-1.353)</td>
<td>(-1.113)</td>
<td>(-1.821)</td>
<td>(-1.451)</td>
</tr>
<tr>
<td>Jiangsu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol</td>
<td>-0.1678</td>
<td>-0.2469</td>
<td>-0.0857</td>
<td>-0.5507</td>
<td>-0.3633</td>
<td>-0.0668</td>
</tr>
<tr>
<td></td>
<td>(-0.456)</td>
<td>(-0.666)</td>
<td>(-0.224)</td>
<td>(-1.401)</td>
<td>(-0.940)</td>
<td>(-0.177)</td>
</tr>
<tr>
<td>Tobacco</td>
<td>0.1016</td>
<td>-0.0938</td>
<td>-0.2283</td>
<td>-0.2540</td>
<td>-0.3998</td>
<td>-0.2069</td>
</tr>
<tr>
<td></td>
<td>(0.340)</td>
<td>(-0.312)</td>
<td>(-0.734)</td>
<td>(-0.797)</td>
<td>(-1.285)</td>
<td>(-0.675)</td>
</tr>
<tr>
<td>Tea</td>
<td>-0.3207</td>
<td>-1.0185</td>
<td>-0.3879</td>
<td>-1.6179</td>
<td>-0.0902</td>
<td>-0.2765</td>
</tr>
<tr>
<td></td>
<td>(-0.322)</td>
<td>(-1.007)</td>
<td>(-0.375)</td>
<td>(-1.502)</td>
<td>(-0.089)</td>
<td>(-0.272)</td>
</tr>
</tbody>
</table>

Notes: * Significant at 10% level or less. Asymptotic t-statistics in parentheses.

Table 7. Testing for Equality of Outlay Equivalent Ratios across Different Adult Goods (χ^2)

<table>
<thead>
<tr>
<th></th>
<th>0-4 Male</th>
<th>0-4 Female</th>
<th>5-9 Male</th>
<th>5-9 Female</th>
<th>10-14 Male</th>
<th>10-14 Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sichuan</td>
<td>2.838</td>
<td>4.825</td>
<td>5.313</td>
<td>2.905</td>
<td>12.728</td>
<td>7.127</td>
</tr>
<tr>
<td>Jiangsu</td>
<td>0.557</td>
<td>1.358</td>
<td>0.610</td>
<td>3.979</td>
<td>2.075</td>
<td>0.485</td>
</tr>
</tbody>
</table>

The pattern of outlay equivalent ratios shown in Table 6 is suggestive of there being a pro-boy bias in overall household spending in Sichuan but not in Jiangsu. To test this we need to return to the original alcohol, tobacco, and tea budget share regressions shown in Table 5.

The pattern of demographic effects is consistent with the π-ratio results, with γ coefficients tending to be lower for males than females (in a given age class) in Sichuan but not in Jiangsu. F tests of the equality of γ coefficients shown in Table 8, however, indicate that in no case is the coefficient of a male child group statistically significantly different from that of a same-aged female child group. The F test results therefore do not indicate any significant bias against girls. Our results are in line with evidence from Bangladesh; Cote d'Ivoire; India; Pakistan; Taipei, China; and Thailand where the Rothbarth method has failed to turn up any conclusive evidence of gender bias despite the fact that Bangladesh; India; and Taipei, China are places where census data are strongly indicative of son preference (see Deaton 1997 for a review). This

22 Coefficients on total expenditure (β) present a mixed picture of demand as regards tobacco and tea though alcohol appears to be a luxury as might be expected. Alcohol and tobacco have sizeable shares in the budget and are consumed by the bulk of rural households, while tea has a relatively small share.
suggests that, due in part to limitations of data, the Rothbarth method is not an appropriate tool for picking up gender biases in household spending.

<table>
<thead>
<tr>
<th></th>
<th>Alcohol Sichuan</th>
<th>Alcohol Jiangsu</th>
<th>Tobacco Sichuan</th>
<th>Tobacco Jiangsu</th>
<th>Tea Sichuan</th>
<th>Tea Jiangsu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4</td>
<td>0.321</td>
<td>0.072</td>
<td>0.996</td>
<td>0.661</td>
<td>0.001</td>
<td>0.766</td>
</tr>
<tr>
<td>5-9</td>
<td>0.653</td>
<td>3.018</td>
<td>0.449</td>
<td>0.014</td>
<td>0.144</td>
<td>2.907</td>
</tr>
<tr>
<td>10-14</td>
<td>2.606</td>
<td>1.406</td>
<td>0.788</td>
<td>0.961</td>
<td>0.408</td>
<td>0.075</td>
</tr>
</tbody>
</table>

V. CORRESPONDENCE WITH WELFARE OUTCOMES

In this section we check whether the types of gender bias we detected using the Engel approach show up in health and education outcomes as revealed in the 1990 PRC census. Checking for this correspondence is important to ascertain whether or not gender biases that we can detect in health and education spending translate into differential welfare outcomes. What we are observing using the Engel method are inputs into the determination of health and education status of male and female children. If we can demonstrate that these biases in inputs result in skewed outcomes then this can be taken as evidence that biases in spending do affect the welfare of sons versus daughters. Correspondence checking through the matching of expenditure and census data allows us to identify whether son preference in parental spending decisions is an important mechanism for explaining widely observed excess female mortality and gender gaps in education. Comparisons made across both Sichuan and Jiangsu and across rural and urban sectors will provide us with insights as to whether modernization can or cannot erode son preference. The prevalence of son preference in the country as a whole combined with heterogeneous economic development make the PRC the ideal laboratory for testing whether economic factors can affect preference for sons. This has important implications for whether public policy has any power to affect son preference.

The other major reason for matching expenditure and census data is to check the robustness of indirect methods for detecting gender biases in household spending. This is a concern as various authors fail to detect gender bias in health and education spending despite evidence of large differences in health and education outcomes in census data (see Deaton 1997 for a review of evidence). Our results are valuable as they confirm a close correspondence in results from these independent data sources and thus point to parental spending decisions as being an important mechanism through which son preference is expressed.

Outcome data such as sex-specific mortality and enrollment rates are not available in household expenditure data sets. We therefore have to go further afield. The 1990 census data represents the obvious choice as both data sets cover the same time period and because the expenditure surveys are designed to be representative samples of the populations covered by the
census. We confine our attention to three measures of welfare outcomes that can be obtained from census data arrayed by age; sex-specific mortality rates, sex ratios, and sex-specific enrollment rates (see Tables 9 and 10).

Table 9. Mortality and Sex Ratio Information from 1990 Census

<table>
<thead>
<tr>
<th>Age</th>
<th>Rural Sichuan</th>
<th>Urban Sichuan</th>
<th>Rural Jiangsu</th>
<th>Urban Jiangsu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Ratio</td>
<td>Male</td>
</tr>
<tr>
<td>At Birth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reverse method</td>
<td>111.9</td>
<td>110.2</td>
<td>115.5</td>
<td>15.3</td>
</tr>
<tr>
<td>Actual reported</td>
<td>115.8</td>
<td>110.2</td>
<td>120.8</td>
<td>3.1</td>
</tr>
<tr>
<td>0</td>
<td>25.1</td>
<td>30.0</td>
<td>112.6</td>
<td>29.2</td>
</tr>
<tr>
<td>1</td>
<td>4.3</td>
<td>5.5</td>
<td>113.7</td>
<td>3.6</td>
</tr>
<tr>
<td>2</td>
<td>2.7</td>
<td>3.2</td>
<td>111.3</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>1.7</td>
<td>111.5</td>
<td>1.4</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>1.0</td>
<td>110.4</td>
<td>0.9</td>
</tr>
<tr>
<td>0-4</td>
<td>10.3</td>
<td>11.8</td>
<td>111.8</td>
<td>7.0</td>
</tr>
<tr>
<td>5-9</td>
<td>1.2</td>
<td>1.0</td>
<td>109.4</td>
<td>0.9</td>
</tr>
<tr>
<td>10-14</td>
<td>1.0</td>
<td>0.7</td>
<td>106.4</td>
<td>0.8</td>
</tr>
<tr>
<td>15-19</td>
<td>1.3</td>
<td>1.1</td>
<td>104.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Total</td>
<td>7.4</td>
<td>7.2</td>
<td>106.6</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Notes: (1) Mortality rate is the number of deaths at each sex-age group between 1 July 1989 and 31 June 1990 per 1,000 surviving children of the same sex-age group as of 31 June 1990.
(2) Sex ratio at birth is the number of male births between 1 July 1989 and 31 June 1990 per 100 female births during the same period.
(3) Sex ratio in other age groups is the number of surviving males per 100 surviving females as of 31 June 1990.

Table 10. School Enrollment Information from 1990 Census

<table>
<thead>
<tr>
<th>Age</th>
<th>Rural Sichuan</th>
<th>Urban Sichuan</th>
<th>Rural Jiangsu</th>
<th>Urban Jiangsu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>6-9</td>
<td>80.1</td>
<td>76.6</td>
<td>79.8</td>
<td>79.8</td>
</tr>
<tr>
<td>10-14</td>
<td>83.1</td>
<td>73.2</td>
<td>89.3</td>
<td>86.9</td>
</tr>
<tr>
<td>15-19</td>
<td>25.7</td>
<td>16.1</td>
<td>38.2</td>
<td>33.9</td>
</tr>
</tbody>
</table>

Notes: (1) Mortality rate is the number of deaths at each sex-age group between 1 July 1989 and 31 June 1990 per 1,000 surviving children of the same sex-age group as of 31 June 1990.
(2) Sex ratio at birth is the number of male births between 1 July 1989 and 31 June 1990 per 100 female births during the same period.
(3) Sex ratio in other age groups is the number of surviving males per 100 surviving females as of 31 June 1990.

In Table 9 we array mortality rates and sex ratios by age. In examining these figures we have to keep in mind that in human populations, boys and girls are not born in equal numbers nor do they die in equal numbers. Coale (1991) reports that in populations that provide unbiased health conditions and more or less equal nutrition to males and females, the ratio of male to female births is about 1.06 but male mortality rates are higher at every age from zero to
the highest age attained. As he points out natural differences in ratios at birth can only be the source of differences of 1 or 2 percent in masculinity ratios of populations and that excess female mortality due to discriminatory treatment of females must be a major cause of skewed sex ratios in countries such as the PRC and India. By comparing the actual sex ratio to that which would exist if there was a normal sex ratio at birth and equal treatment of the sexes, Coale (1991) comes up with a figure of 29.1 million females as being “missing” from the PRC population in 1990 due to the impact of higher female mortality that may have resulted from traditionally based differential treatment of the sexes.

If we compare mortality rates across rural Sichuan and rural Jiangsu in Table 9 we observe that differences in mortality rates (per 1,000 population) between males and females correspond exactly to our Engel health results (compare Table 9 and Table 3). In rural Sichuan the female mortality rate is significantly higher than the male rate for children aged 0–4. In rural Jiangsu there is little discernible difference. This is consistent with lower health spending on girls leading to excess female mortality in rural Sichuan but not in rural Jiangsu. There is simply no way to reconcile the much higher mortality rates for girls in rural Sichuan, in particular in the first year of life, with what we would expect in a normal biological population where there is equal treatment of the sexes. Rural Jiangsu, in contrast, is closer to the Coale (1991) benchmark in that male mortality rates lie slightly above female mortality rates in the critical 0–4 range where the bulk of child mortality is concentrated. For the older 5–9 and 10–14 age classes there is no evidence of male mortality rates exceeding female mortality rates for either rural Sichuan or rural Jiangsu. There is thus an exact correspondence between our results on health good spending and pattern of mortality results. These results indicate that modernization captured by rising economic growth and off-farm diversification have eroded son preference in the arena of health spending, leading to a marked reduction in excess female mortality for children aged 0–4 in rural Jiangsu. In rural Sichuan the traditions of son preference have led to discriminatory treatment adverse to females, which is sufficient to outweigh their normal advantage of experiencing mortality rates lower than that of males. This is a highly significant finding as it suggests that the tradition of son preference is not immune to economic factors thus offering a route through which public policy can affect this behavior.

We turn now to contrast our core rural results with those for urban Sichuan and Jiangsu (see Table 9). There is no discernible evidence of a pro-boy bias in the pattern of mortality rates for the 0–4 age group, which is consistent with our inability to find evidence of gender bias in health spending in urban Sichuan (see Table 11). Mortality results mirror those for rural Jiangsu, female rates being (on the whole) slightly lower than male rates and sex ratios gradually falling over time, suggesting populations relatively unconstrained in their health budget decisions. As urban populations in the PRC are richer and health services more available, they are interesting benchmarks against which we can compare the behavior of poorer populations. Matching our mortality results with our Engel health results indicates that

23 The fact that mortality rates as a whole are higher for Sichuan than Jiangsu is also consistent with the former being a poorer and more backward province.
as modernization and urbanization proceeds, excess female mortality due to parents spending less on the health needs of female children diminishes.

Sex ratios (males per 100 females) at different ages are also reported in Table 9. Contrasting these with the mortality rates reveals an interesting paradox: sex ratios during year 0 are higher in rural Jiangsu (115.5) than in rural Sichuan (112.6) despite there being much stronger evidence of excess female mortality in the latter. To resolve this paradox we need to be clear on what is being captured in each of our tests of gender bias. Sex ratios capture the history of differential treatment of the sexes whether this is at the foetal or child stage. Expenditure and mortality-based tests, on the other hand, look at biases within the surviving populations but cannot capture differential treatment of the sexes before birth. Higher sex ratios in rural Jiangsu must therefore be due to differential treatment prior to year 0. To ascertain whether this is in fact the case we need to examine what the sex ratios looked like at birth. Calculating this figure constitutes a problem as the one child policy creates an incentive to underreport female births (see Zeng et al. 1993, Ge and Xue 1994.). This can be seen in Table 9 where we see that the reported sex ratio at birth does not appear to be consistent with the pattern of sex ratios and mortality rates across the 0–4 range.\(^{24}\) To correct for this we exploit the fact that there is less of an incentive to underreport female deaths than female births to arrive at a more reliable estimate of the sex ratio at birth using the reverse survival method (Zeng et al. 1993).\(^{25}\) Both the official and recalculated sex ratios at birth are reported in Table 9. As can be seen from the table, the differences between the two sex ratio at birth estimates are quite significant in rural areas.\(^{26}\) In addition, the sex ratios calculated using the reverse survival method appear consistent both with the pattern of reported sex ratios and gender-specific mortality rates after birth. Having female mortality rates above male mortality rates across the 0–4 range tends to increase the sex ratio (and vice versa).

The reverse survival estimates confirm that sex ratios are significantly higher at birth in rural Jiangsu. The most plausible explanation for this finding is that greater access to ultrasound and other methods for testing the sex of fetuses (due in part to higher incomes) combined with selective abortion have enabled rural residents in Jiangsu to express their

\(^{24}\) For example, in rural Sichuan there is a fall in sex ratio from the actual reported ratio at birth to that in year 0 despite the fact that female mortality exceeds male mortality in year 0. Two factors may encourage underreporting. One, if a couple wants is one boy, they will report male births but not female births. Two, sample surveys also suggest that when authorities investigate unauthorized births, parents are more likely to confess an unreported boy than an unreported girl because (i) they are more willing to pay fines for the former and (ii) a couple with an unreported female baby is more afraid of being sterilized than a couple with an unreported male baby (see Ge and Xue 1994, Mu 1995).

\(^{25}\) The method amounts to adding the number of deaths of male and female children aged 0 to the total number of male and female children surviving at the end of year 0 to arrive at an estimate of the expected number of male and female births. Comparing these figures to reported births gives an idea of the magnitude of the underreporting bias and their ratio constitutes a corrected measure of sex ratio at birth.

\(^{26}\) The differences suggest that underreporting of female births leads to a 4 percentage point upward bias in the reported sex ratio at birth in rural Sichuan and a more than 5 percentage point upward bias in rural Jiangsu. The two sex ratios are the same for urban Sichuan suggesting that there is less incentive or scope to underreport female births in urban areas.
preference for boys prior to birth. Following birth there is no evidence of discrimination as regards health spending or observed mortality rates. Sex ratios remain constant between birth and year 0 reflecting the equality of mortality rates. The pattern of mortality rates over the age range 1–4, with slightly lower rates for females leading to a lowering of the sex ratio is consistent with what one would expect in an unconstrained developed country population (see Coale 1991). The pattern in rural Sichuan is entirely different. Sex ratios at birth are only moderately skewed, which is suggestive of limited differential treatment prior to birth, however, they then increase significantly in years 0 and 1 as a result of excess female mortality, which is in part driven by gender biases in health spending.

What is even more fascinating is that the (skewed) sex ratios at age 2 (and for the 0–4 period as a whole) are close to being identical between the rural sectors of the two provinces. Rural populations in both provinces thus exhibit a similar and significant preference for boys, however, the means by which they express son preference is different. In rural Jiangsu, son preference was expressed more through adjustments prior to birth, while in rural Sichuan (possibly due to cost constraints or limited availability of sex determination technology), preference was expressed more through differential treatment of boys and girls in health care spending. These findings raise interesting policy questions as to whether banning ultrasound and other procedures might displace the incidence of son preference from the fetal to the child stage, leading to excess female mortality in early life.

The fact that sex ratios for children aged 0–4 in urban areas are considerably lower does suggest that modernization is playing a role in eroding son preference. The fact that returns to male and female children are more similar in urban areas may also dampen the economic incentive to prefer sons over daughters. This accords well with what we find with demand analysis where excess female mortality in early life seems now to be a characteristic of poorer, backward areas.

We turn next to census information on education outcomes (see Table 10). Again we find results corresponding almost exactly to our findings on the intrahousehold allocation of spending on education goods and services. Gender gaps in enrollment in rural areas are relatively small for children aged 6–9 but become larger for children 10–14 and 15–19. This is consistent with our finding of a significant pro-boy bias in spending on education services for the 15–19 age group in both provinces. Overall enrollment rates are lower and gender gaps larger in rural Sichuan. In stark contrast there is little or no evidence of a gender gap in enrollment in the 6–9 and 10–14 age groups in urban areas, and the gap for the 15–19 age group is modest compared to that in rural areas. This is consistent with us being unable to find any gender bias in education spending in urban Sichuan (see Table 11). Matching household and census data leaves us with the strong impression that modernization and urbanization are powerful forces for reducing son preference in education. The challenge now is to understand why richer parents treat their sons and daughters more equitably. Finding that economic factors do affect son preference is nonetheless an important first step as it makes it transparent we are not dealing with an immutable social norm and that public policy can play a role.
VI. DETERMINANTS OF SON PREFERENCE

Demand analysis using data from rural Sichuan and rural Jiangsu generated three key sets of gender bias results: (i) there is no evidence of discrimination in the allocation of food and calories; (ii) there is evidence of discrimination against young girls (0–4) in the allocation of health goods in the poorer, less diversified province (Sichuan) but not in the richer, more diversified province (Jiangsu); and (iii) there is evidence in both provinces of a pro-boy bias in spending on goods and services associated with secondary and tertiary education. The previous section demonstrated that these biases corresponded closely to significant differences between the sexes in mortality and enrollment outcomes.

In this section we look more closely at which factors might be driving son preference. To do this we begin by looking at whether gender biases in health and education spending vary across rural and urban households. This work thus builds on our analysis of census data, which suggest that urban populations treat daughters and sons more equitably than do rural populations. We then look within the rural samples to see whether households that are poorer or more dependent on agriculture exhibit greater son preference than households that are richer and more diversified. This comparative analysis should provide some insights into what are the key determinants of son preference in the PRC.

We begin by exploiting the fact that we have comparable household expenditure data for urban Sichuan.27 As these households are richer, more educated, and have access to a greater array of social services they may be characterized as being less constrained in terms of the choices they make regarding the intrahousehold allocation of health and education expenditures. Economic factors would thus enter with less impact in the expenditure decisions of these households. However, if biases are driven by purely cultural factors then we would expect the discrimination results identified in rural Sichuan to carry over to the urban setting.

In Table 11 we report F tests of the equality of γ coefficients for both health and education goods and services for the urban Sichuan.28 To facilitate comparison these are presented alongside the results for rural samples drawn from Tables 2-4 (see top panel). As regards both health goods and services we could find no evidence of a pro-boy bias at classical significance levels. These results complement the rural Jiangsu results in suggesting that higher incomes lead to an erosion of still-prevalent son preference in poor rural regions. They are also in line with census data showing that mortality and enrollment gender gaps are of a much lower magnitude in urban PRC, indicating a more equitable treatment of the sexes. Taken together the results indicate that economic factors do affect parental allocation decisions, so that we observe that son preference varies across the PRC, being most pronounced in poor, backward, rural areas.

27 For a full description of the urban data see Burgess, Zhu, and Yun (1996). Regression results for urban Sichuan have been omitted to avoid clutter. An urban household data set is not available for Jiangsu.

28 In common with the rural samples, we could find no evidence of a pro-boy bias in spending on food and calories.
To investigate this theme further we rank households from all three samples according to equivalized consumption expenditure where equivalence scales are derived using the calorie Engel method (see Burgess 1997). The full sample is then split into two equal sized samples depending on whether households are above or below the median consumption value. Separate health and education Engel regressions are then run on each of the subsamples and F tests are constructed to examine whether γ coefficients for male and female children differ. Results are shown in the bottom panels of Table 11.

Split sample results suggest that the pro-boy bias in health good spending in rural Sichuan is more pronounced for poorer households. The difference between the γ coefficients in the 0–4 age group remains significant for the poor subgroup but is insignificant for the rich subgroup. This suggests that gender biases in health spending among poor households is driving the overall finding of a pro-boy bias in health spending for the 0–4 age group. Rural Jiangsu and urban Sichuan results remain insignificant in the split samples. Again this is in line with what we observe in census data where mortality patterns are closer to what we would expect to see in unconstrained populations where there is no tradition of treating the sexes unequally (see Table 9). Taking (i) the rich rural versus poor rural, (ii) rural versus urban, and (iii) split sample results together, we have a strong indication that income growth leads to an erosion of son preference in health spending.

We only examine categories of household expenditure for which we found evidence of discrimination in the full sample results.
Education results for samples split by equivalent consumption expenditure show a similar pattern. For education goods, both discrimination results detected in the overall rural samples (10–14 age group in Sichuan and 15–19 in Jiangsu) show up with greater force in the poor subsample while there is no evidence of discrimination in the rich subsample. For urban Sichuan there is no evidence of discrimination in either of the split samples. How rich parents are would seem to affect the degree to which they favor boys in spending on goods associated with secondary and tertiary education. For education services, the evidence of a pro-boy bias in spending on tertiary education for the 15–19 group, detected for rural areas of both provinces in the overall sample, carries over to the poor subgroup. This type of discrimination disappears for the rich subgroup in Jiangsu but not for Sichuan where a clear pro-boy bias remains. This is consistent with son preference being more entrenched in rural Sichuan than rural Jiangsu. These different results are consistent with the idea that richer parents exhibit less son preference as regards investments in secondary and tertiary education.

Since the onset of rural reforms in 1978 there has been rapid growth in rural off-farm employment. The pattern of diversification is uneven both within and across PRC provinces; Jiangsu having experienced a high degree of diversification and Sichuan a relatively low degree of diversification (see Table 1). As diversification simultaneously affects the family budget set and the relative returns of male and female children it is likely to influence parental decisions on the intrahousehold allocation of household resources. To investigate this hypothesis we sort households in the provincial samples by the share of off-farm income\(^3\) in total income, use the median diversification value to split households into equal sized low and high diversification subsamples, and then proceed to test for gender bias within these samples. The results are shown in Table 12. Regarding health spending, the split sample results mirror those in Table 11 but are more clear-cut. The only significant evidence of pro-boy bias in spending on health goods is found among households with low levels of diversification. This would suggest that households with a strong dependence on agriculture value male children more than female children. This result may partly be driven by differential returns to male and female children being higher on-farm than off-farm.

For education goods, diversification also affects the strength of son preference. Only the less diversified subset of households exhibits pro-boy biases, strongly for the 10–14 age group in Sichuan and weakly for the 15–19 age group in Jiangsu. All F tests for the more diversified subset of households are insignificant. Diversification would therefore appear to erode this form of discrimination. For education services the impact of diversification is more complex. Pro-boy discrimination detected in the full sample for the 15–19 group in Sichuan appears to be more pronounced for households with higher levels of diversification reflecting both a pro-boy bias and the fact it is mainly these households that engage in tertiary education. Less diversified households in Sichuan, however, also exhibit a pro-boy bias in investments in secondary education services that was not apparent in the full sample (10–14). Son preference as regards

\(^3\) Off-farm income includes all income sources except those associated with farming, forestry, animal husbandry, and fishing.
expenditure on education services thus appears to occur at an earlier stage for households more dependent on agriculture. For rural Jiangsu we find only suggestive evidence of gender bias for less diversified households whereas more diversified households exhibit no signs of son preference in spending on education services.\footnote{The F test for the 15–19 age group is on the margin of significance (at the 5 percent level) in the less diversified subsample but is clearly insignificant for the more diversified one.}

<table>
<thead>
<tr>
<th>Table 12. F-tests for the Equality of Gender Coefficients: Degree of Diversification Breakdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Goods</td>
</tr>
<tr>
<td>Rural Sichuan</td>
</tr>
<tr>
<td>Overall Sample</td>
</tr>
<tr>
<td>0-4</td>
</tr>
<tr>
<td>5-9</td>
</tr>
<tr>
<td>10-14</td>
</tr>
<tr>
<td>15-19</td>
</tr>
<tr>
<td>Bottom ½ Sample</td>
</tr>
<tr>
<td>0-4</td>
</tr>
<tr>
<td>5-9</td>
</tr>
<tr>
<td>10-14</td>
</tr>
<tr>
<td>15-19</td>
</tr>
<tr>
<td>Upper ½ Sample</td>
</tr>
<tr>
<td>0-4</td>
</tr>
<tr>
<td>5-9</td>
</tr>
<tr>
<td>10-14</td>
</tr>
<tr>
<td>15-19</td>
</tr>
</tbody>
</table>

VII. CONCLUSIONS

The tradition of son preference is widespread in South and East Asia and is manifested in excess female mortality during early life, imbalanced sex ratios, and large gender gaps in education. This paper has matched PRC household and census data for 1990 to better understand the determinants of son preference. This has enabled us to convincingly show that biases in household spending on health and education correspond to observed biases in age-specific mortality and enrollment. Gender biases in spending within particular age groups seem to correspond fairly exactly to gender biases in outcomes in the same age groups. This would suggest that gender biases in the intrahousehold allocation of resources at least partly underlie observed differences in outcomes.

Comparisons within and across rural and urban samples confirm that gender biases in health and education spending occur predominately in poor, rural households that are highly dependent on agriculture. We have generated a convincing body of evidence that shows that...
economic factors do affect preference for sons. Public policy, to the extent that it can affect such factors as economic growth, off-farm diversification, and urbanization can therefore have a role in counteracting gender biases in household spending in key areas such as health and education. As treatment of female and male children within the household become more equitable as a result of improving economic conditions, we would expect gender gaps in mortality and enrollment rates to narrow. Son preference therefore, should not be treated as an immutable social norm or tradition. Modernization does appear to have the power to reduce the gap between female and male outcomes by changing the manner in which parents allocate health and education resources within the household. Understanding which specific policies lead to more equal treatment of the sexes within households is the challenge that must now be taken up.

The comparison of the health results for rural Sichuan and Jiangsu also raises the pressing issue of what to do about ultrasound and other procedures for expressing son preference prior to birth. Though illegal, there is strong evidence from this and other studies that use of these methods is widespread, particularly in richer rural areas. The PRC authorities are introducing stricter regulations in an attempt to prevent this form of pre-birth discrimination. While such policy measures are essential, comparison of the Sichuan and Jiangsu results does raise the worrying possibility that banning pre-birth discrimination might lead to higher mortality rates for surviving girls. That is, son preference might be expressed at the child rather than fetal stage.

Our study is also important methodologically as it suggests that indirect Engel methods do have the power for picking up gender biases in intrahousehold allocation. This is meaningful as attempts to pick up gender biases in household spending using these methods have been largely unsuccessful despite some of the tests being carried on data from countries where census data are strongly indicative of son preference. As regards Rothbarth methods, our results, in common with the majority in the literature, have failed to pick up any clear signs of gender bias, pointing to the strength of the assumptions underlying these tests.

REFERENCES

PUBLICATIONS FROM THE ECONOMICS AND RESEARCH DEPARTMENT

ERD WORKING PAPER SERIES (WPS)
(Published in-house; Available through ADB Office of External Relations; Free of Charge)

No. 1 Capitalizing on Globalization
—Barry Eichengreen, January 2002

No. 2 Policy-based Lending and Poverty Reduction: An Overview of Processes, Assessment and Options
—Richard Bolt and Manabu Fujimura
January 2002

No. 3 The Automotive Supply Chain: Global Trends and Asian Perspectives
—Francisco Veloso and Rajiv Kumar
January 2002

No. 4 International Competitiveness of Asian Firms: An Analytical Framework
—Rajiv Kumar and Doren Chadee
February 2002

No. 5 The International Competitiveness of Asian Economies in the Apparel Commodity Chain
—Gary Gereffi
February 2002

No. 6 Monetary and Financial Cooperation in East Asia—The Chiang Mai Initiative and Beyond
—Pradumna B. Rana
February 2002

No. 7 Probing Beneath Cross-national Averages: Poverty, Inequality, and Growth in the Philippines
—Arsenio M. Balisacan and Ernesto M. Pernia
March 2002

No. 8 Poverty, Growth, and Inequality in Thailand
—Anil B. Deolalikar
April 2002

No. 9 Microfinance in Northeast Thailand: Who Benefits and How Much?
—Brett E. Coleman
April 2002

No. 10 Poverty Reduction and the Role of Institutions in Developing Asia
—Anil B. Deolalikar, Alex B. Brillantes, Jr., Raghav Gaiha, Ernesto M. Pernia, Mary Racelis with the assistance of Marita Concepcion Castro-Guevara, Liza L. Lim, Filipinas F. Quising
May 2002

No. 11 The European Social Model: Lessons for Developing Countries
—Assar Lindbeck
May 2002

No. 12 Costs and Benefits of a Common Currency for ASEAN
—Srinivas Madhur
May 2002

No. 13 Monetary Cooperation in East Asia: A Survey
—Raul Fabella
May 2002

No. 14 Toward A Political Economy Approach to Policy-based Lending
—George Abonyi
May 2002

No. 15 A Framework for Establishing Priorities in a Country Poverty Reduction Strategy
—Ron Duncan and Steve Pollard
June 2002

No. 16 The Role of Infrastructure in Land-use Dynamics and Rice Production in Viet Nam’s Mekong River Delta
—Christopher Edmonds
July 2002

No. 17 Effect of Decentralization Strategy on Macroeconomic Stability in Thailand
—Kanokpan Lao-Araya
August 2002

No. 18 Poverty and Patterns of Growth
—Rana Hasan and M. G. Quibria
August 2002

No. 19 Why are Some Countries Richer than Others? A Reassessment of Mankiw-Romer-Weil’s Test of the Neoclassical Growth Model
—Jesus Felipe and John McCombie
August 2002

No. 20 Modernization and Son Preference in People’s Republic of China
—Robin Burgess and Juzhong Zhuang
September 2002

ERD TECHNICAL NOTE SERIES (TNS)
(Published in-house; Available through ADB Office of External Relations; Free of Charge)

No. 1 Contingency Calculations for Environmental Impacts with Unknown Monetary Values
—David Dole
February 2002

No. 2 Integrating Risk into ADB’s Economic Analysis of Projects
—Nigel Rayner, Anneli Lagman-Martin, and Keith Ward
June 2002

No. 3 Measuring Willingness to Pay for Electricity
—Peter Chynnowski
July 2002

No. 4 Economic Issues in the Design and Analysis of a Wastewater Treatment Project
—David Dole
July 2002
EDR POLICY BRIEF SERIES (PBS)
(Published in-house; Available through ADB Office of External Relations; Free of charge)

No. 1 Is Growth Good Enough for the Poor?
—Ernesto M. Pernia, October 2001
No. 2 India's Economic Reforms
What Has Been Accomplished?
What Remains to Be Done?
—Arvind Panagariya, November 2001
No. 3 Unequal Benefits of Growth in Viet Nam
—Indu Bhushan, Erik Bloom, and Nguyen Minh Thang, January 2002
No. 4 Is Volatility Built into Today's World Economy?
—J. Malcolm Dowling and J.P. Verbiest, February 2002
No. 5 What Else Besides Growth Matters to Poverty Reduction? Philippines
—Arsenio M. Balisacan and Ernesto M. Pernia, February 2002
No. 6 Achieving the Twin Objectives of Efficiency and Equity: Contracting Health Services in Cambodia
—Indu Bhushan, Sheryl Keller, and Brad Schwartz, March 2002
No. 7 Causes of the 1997 Asian Financial Crisis: What Can an Early Warning System Model Tell Us?
—Juzhong Zhuang and Malcolm Dowling, June 2002
No. 8 The Role of Preferential Trading Arrangements in Asia
—Christopher Edmonds and Jean-Pierre Verbiest, July 2002
No. 9 The Doha Round: A Development Perspective
—Jean-Pierre Verbiest, Jeffrey Liang, and Lea Samulong, July 2002

MONOGRAPH SERIES
(Published in-house; Available through ADB Office of External Relations; Free of charge)

EDRC REPORT SERIES (ER)

No. 1 ASEAN and the Asian Development Bank
—Seiji Naya, April 1982
No. 2 Development Issues for the Developing East and Southeast Asian Countries and International Cooperation
—Seiji Naya and Graham Abbott, April 1982
No. 3 Aid, Savings, and Growth in the Asian Region
—J. Malcolm Dowling and Ulrich Hiemenz, April 1982
No. 4 Development-oriented Foreign Investment and the Role of ADB
—Kiyoshi Kajiina, April 1982
No. 5 The Multilateral Development Banks and the International Economy's Missing Public Sector
—John Lewis, June 1982
No. 6 Notes on External Debt of DMCs
—Evelyn Go, July 1982
No. 7 Grant Element in Bank Loans
—Dal Hyan Kim, July 1982
No. 8 Shadow Exchange Rates and Standard Conversion Factors in Project Evaluation
—Peter Warr, September 1982
No. 9 Small and Medium-Scale Manufacturing Establishments in ASEAN Countries: Perspectives and Policy Issues
—Mathias Bruch and Ulrich Hiemenz, January 1983
No. 10 A Note on the Third Ministerial Meeting of GATT
—Jungsoo Lee, January 1983
No. 11 Macroeconomic Forecasts for the Republic of China, Hong Kong, and Republic of Korea
—J.M. Dowling, January 1983
No. 12 ASEAN: Economic Situation and Prospects
—Seiji Naya, March 1983
No. 13 The Future Prospects for the Developing Countries of Asia
—Seiji Naya, March 1983
No. 14 Energy and Structural Change in the Asia-Pacific Region, Summary of the Thirteenth Pacific Trade and Development Conference
—Seiji Naya, March 1983
No. 15 A Survey of Empirical Studies on Demand for Electricity with Special Emphasis on Price Elasticity of Demand
—Wisarn Pupphavesa, June 1983
No. 16 Determinants of Paddy Production in Indonesia: 1972-1981–A Simultaneous Equation Model Approach
—T.K. Jayaraman, June 1983
No. 17 The Philippine Economy: Economic Forecasts for 1983 and 1984
—J.M. Dowling, E. Go, and C.N. Castillo, June 1983
No. 18 Economic Forecast for Indonesia
No. 19 Relative External Debt Situation of Asian Developing Countries: An Application of Ranking Method
—Jungsoo Lee, June 1983
No. 20 New Evidence on Yields, Fertilizer Application, and Prices in Asian Rice Production
—William James and Teresita Ramirez, July 1983
No. 21 Inflationary Effects of Exchange Rate Changes in Nine Asian LDCs
—Pradumna B. Rana and J. Malcolm Dowling, Jr., December 1983
No. 22 Effects of External Shocks on the Balance of Payments, Policy Responses, and Debt Problems of Asian Developing Countries
—Seiji Naya, December 1983
No. 23 Changing Trade Patterns and Policy Issues: The Prospects for East and Southeast Asian Developing Countries
—Seiji Naya and Ulrich Hiemenz, February 1984
No. 24 Small-Scale Industries in Asian Economic Development: Problems and Prospects
—Seiji Naya, February 1984
No. 25 A Study on the External Debt Indicators
Applying Logit Analysis
—Jungsoo Lee and Clarita Barretto, February 1984

No. 26 Alternatives to Institutional Credit Programs in the Agricultural Sector of Low-Income Countries
—Jennifer Saur, March 1984

No. 27 Economic Scene in Asia and Its Special Features
—Kedar N. Kohli, November 1984

No. 28 The Effect of Terms of Trade Changes on the Balance of Payments and Real National Income of Asian Developing Countries
—Jungsoo Lee and Lutgarda Labios, January 1985

—Yoshihiro Iwasaki, February 1985

No. 30 Sources of Balance of Payments Problem in the 1970s: The Asian Experience
—Pradumna Rana, February 1985

No. 31 India's Manufactured Exports: An Analysis of Supply Sectors
—Izarl Ali, February 1985

No. 32 Meeting Basic Human Needs in Asian Developing Countries
—Jungsoo Lee and Emma Banaria, March 1985

No. 33 The Impact of Foreign Capital Inflow on Investment and Economic Growth in Developing Asia
—Evelyn Go, May 1985

No. 34 The Climate for Energy Development in the Pacific and Asian Region: Priorities and Perspectives
—V.V. Desai, April 1986

No. 35 Impact of Appreciation of the Yen on Developing Member Countries of the Bank
—Jungsoo Lee, Pradumna Rana, and Izarl Ali, May 1986

No. 36 Smuggling and Domestic Economic Policies in Developing Countries
—A.H.M.N. Chowdhury, October 1986

No. 37 Public Investment Criteria: Economic Internal Rate of Return and Equalizing Discount Rate
—Izarl Ali, November 1986

No. 38 Review of the Theory of Neoclassical Political Economy: An Application to Trade Policies
—M.G. Quibria, December 1986

No. 39 Factors Influencing the Choice of Location: Local and Foreign Firms in the Philippines
—E.M. Pernia and A.N. Herrin, February 1987

No. 40 A Demographic Perspective on Developing Asia and Its Relevance to the Bank
—E.M. Pernia, May 1987

No. 41 Emerging Issues in Asia and Social Cost Benefit Analysis
—I. Ali, September 1988

No. 42 Shifting Revealed Comparative Advantage: Experiences of Asian and Pacific Developing Countries
—P.B. Rana, November 1988

No. 43 Agricultural Price Policy in Asia: Issues and Areas of Reforms
—I. Ali, November 1988

No. 44 Service Trade and Asian Developing Economies
—M.G. Quibria, October 1989

No. 45 A Review of the Economic Analysis of Power Projects in Asia and Identification of Areas of Improvement
—I. Ali, November 1989

No. 46 Growth Perspective and Challenges for Asia: Areas for Policy Review and Research
—I. Ali, November 1989

No. 47 An Approach to Estimating the Poverty Alleviation Impact of an Agricultural Project
—I. Ali, January 1990

No. 48 Economic Growth Performance of Indonesia, the Philippines, and Thailand:
The Human Resource Dimension
—E.M. Pernia, January 1990

No. 49 Foreign Exchange and Fiscal Impact of a Project:
A Methodological Framework for Estimation
—I. Ali, February 1990

No. 50 Public Investment Criteria: Financial and Economic Internal Rates of Return
—I. Ali, April 1990

No. 51 Evaluation of Water Supply Projects:
An Economic Framework
—I. Ali, November 1990

No. 52 Interrelationship Between Shadow Prices, Project Investment, and Policy Reforms:
An Analytical Framework
—I. Ali, November 1990

No. 53 Issues in Assessing the Impact of Project and Sector Adjustment Lending
—I. Ali, December 1990

No. 54 Some Aspects of Urbanization and the Environment in Southeast Asia
—Ernesto M. Pernia, January 1991

No. 55 Financial Sector and Economic Development: A Survey
—Jungsoo Lee, September 1991

No. 56 A Framework for Justifying Bank-Assisted Education Projects in Asia: A Review of the Socioeconomic Analysis and Identification of Areas of Improvement
—Etienne Van De Walle, February 1992

No. 57 Medium-term Growth-Stabilization Relationship in Asian Developing Countries and Some Policy Considerations
—Yun-Hwan Kim, February 1993

No. 58 Urbanization, Population Distribution, and Economic Development in Asia
—Ernesto M. Pernia, February 1993

No. 59 The Need for Fiscal Consolidation in Nepal: The Results of a Simulation
—Filippo di Mauro and Ronald Antonio Butiong, July 1993

No. 60 A Computable General Equilibrium Model of Nepal
—Timothy Buehler and Filippo di Mauro, October 1993

No. 61 The Role of Government in Export Expansion in the Republic of Korea: A Revisit
—Yun-Hwan Kim, February 1994

No. 62 Rural Reforms, Structural Change, and Agricultural Growth in the People's Republic of China
—Bo Lin, August 1994

No. 63 Incentives and Regulation for Pollution Abatement with an Application to Waste Water Treatment

No. 64 Saving Transitions in Southeast Asia
—Frank Harrigan, February 1996

No. 65 Total Factor Productivity Growth in East Asia: A Critical Survey
—Jesus Felipe, September 1997

No. 66 Foreign Direct Investment in Pakistan: Policy Issues and Operational Implications
—Ashfaque H. Khan and Yun-Hwan Kim, July 1999

No. 67 Fiscal Policy, Income Distribution and Growth
—Sailesh K. Jha, November 1999
No. 1 International Reserves: Factors Determining Needs and Adequacy
—Evelyn Go, May 1981

No. 2 Domestic Savings in Selected Developing Asian Countries
—Basil Moore, assisted by A.H.M. Nuruddin Choudhury, September 1981

No. 3 Changes in Consumption, Imports and Exports of Oil Since 1973: A Preliminary Survey of the Developing Member Countries of the Asian Development Bank
—Dal Hyun Kim and Graham Abbott, September 1981

No. 4 By-Passed Areas, Regional Inequalities, and Development Policies in Selected Southeast Asian Countries
—William James, October 1981

No. 5 Asian Agriculture and Economic Development
—William James, March 1982

No. 6 Inflation in Developing Member Countries: An Analysis of Recent Trends

No. 7 Industrial Growth and Employment in Developing Asian Countries: Issues and Perspectives for the Coming Decade
—Ulrich Hiemenz, March 1982

—Burnham Campbell, April 1982

No. 9 Developing Asia: The Importance of Domestic Policies
—Economics Office Staff under the direction of Seiji Naya, May 1982

No. 10 Financial Development and Household Savings: Issues in Domestic Resource Mobilization in Asian Developing Countries
—Wan-Soon Kim, July 1982

No. 11 Industrial Development: Role of Specialized Financial Institutions
—Kedar N. Kohli, August 1982

—Burnham Campbell, September 1982

No. 13 Credit Rationing, Rural Savings, and Financial Policy in Developing Countries
—William James, September 1982

No. 14 Small and Medium-Scale Manufacturing Establishments in ASEAN Countries: Perspectives and Policy Issues
—Mathias Bruch and Ulrich Hiemenz, March 1983

No. 15 Income Distribution and Economic Growth in Developing Asian Countries
—I. Malcolm Douling and David Soo, March 1983

No. 16 Long-Run Debt-Servicing Capacity of Asian Developing Countries: An Application of Critical Interest Rate Approach
—Jungsoo Lee, June 1983

No. 17 External Shocks, Energy Policy, and Macroeconomic Performance of Asian Developing Countries: A Policy Analysis
—William James, July 1983

No. 18 The Impact of the Current Exchange Rate System on Trade and Inflation of Selected Developing Member Countries
—Pradumna Rana, September 1983

No. 19 Asian Agriculture in Transition: Key Policy Issues
—William James, September 1983

No. 20 The Transition to an Industrial Economy in Monsoon Asia

No. 21 The Significance of Off-Farm Employment and Incomes in Post-War East Asian Growth
—Harry T. Oshima, October 1983

No. 22 Income Distribution and Poverty in Selected Asian Countries
—John Malcolm Douling, Jr., November 1984

No. 23 ASEAN Economies and ASEAN Economic Cooperation
—Narongchai Akrasanee, November 1984

No. 24 Economic Analysis of Power Projects
—Nitin Desai, January 1985

No. 25 Exports and Economic Growth in the Asian Region
—Pradumna Rana, February 1985

No. 26 Patterns of External Financing of DMCs
—E. Go, May 1985

No. 27 Industrial Technology Development in the Republic of Korea
—S.Y. Lo, July 1985

No. 28 Risk Analysis and Project Selection: A Review of Practice in Kenya
—J.K. Johnson, August 1985

No. 29 Rice in Indonesia: Price Policy and Comparative Advantage
—I. Ali, January 1986

No. 30 Effects of Foreign Capital Inflows on Developing Countries of Asia
—Jungsoo Lee, Pradumna B. Rana, and Yoshihiro Iwasaki, April 1986

No. 31 Economic Analysis of the Environmental Impacts of Development Projects
—John A. Dixon et al., EAPI, East-West Center, August 1986

No. 32 Science and Technology for Development: Role of the Bank
—Kedar N. Kohli and Ifzal Ali, November 1986

No. 33 Satellite Remote Sensing in the Asian and Pacific Region
—Mohan Sundara Rajan, December 1986

No. 34 Changes in the Export Patterns of Asian and Pacific Developing Countries: An Empirical Overview
—Pradumna B. Rana, January 1987

No. 35 Agricultural Price Policy in Nepal
—Gerald C. Nelson, March 1987

No. 36 Implications of Falling Primary Commodity Prices for Agricultural Strategy in the Philippines
—I. Ali, September 1987

No. 37 Determining Irrigation Charges: A Framework
—Prabhakar B. Ghate, October 1987

No. 38 The Role of Fertilizer Subsidies in Agricultural Production: A Review of Select Issues
—M.G. Qubria, October 1987

No. 39 Domestic Adjustment to External Shocks in Developing Asia
—I. Ali, October 1987

No. 40 Improving Domestic Resource Mobilization through Financial Development: Indonesia
—Philip Erquiaga, November 1987

No. 41 Recent Trends and Issues on Foreign Direct Investment in Asian and Pacific Developing Countries
—I. Ali, September 1988

No. 42 Manufactured Exports from the Philippines: A Sector Profile and an Agenda for Reform
—I. Ali, September 1988

No. 43 A Framework for Evaluating the Economic Benefits of Power Projects
—I. Ali, August 1989

No. 44 Promotion of Manufactured Exports in Pakistan
No. 45 Education and Labor Markets in Indonesia: A Sector Survey
—Ernesto M. Pernia and David N. Wilson, September 1989

No. 46 Industrial Technology Capabilities and Policies in Selected ADCs
—Hiroshi Kikuzo, June 1990

No. 47 Designing Strategies and Policies for Managing Structural Change in Asia
—Ijaz Ali, June 1990

No. 48 The Completion of the Single European Community Market in 1992: A Tentative Assessment of its Impact on Asian Developing Countries
—J.P. Verbiest and Min Tang, June 1991

No. 49 Economic Analysis of Investment in Power Systems
—Ijaz Ali, June 1991

No. 50 External Finance and the Role of Multilateral Financial Institutions in South Asia: Changing Patterns, Prospects, and Challenges
—Jungsoo Lee, November 1991

No. 51 The Gender and Poverty Nexus: Issues and Policies
—M.G. Quibria, November 1993

No. 52 The Role of the State in Economic Development: Theory, the East Asian Experience, and the Malaysian Case
—Pradumna B. Rana, December 1993

—Jungsoo Lee and Yoshihiro Iwasaki, September 1989

No. 1 Poverty in the People’s Republic of China: Recent Developments and Scope for Bank Assistance
—K.H. Moinuddin, November 1992

No. 2 The Eastern Islands of Indonesia: An Overview of Development Needs and Potential
—Brien K. Parkinson, January 1993

No. 3 Rural Institutional Finance in Bangladesh and Nepal: Review and Agenda for Reforms
—A.H.M.N. Chowdhury and Marcella C. Garcia, November 1993

No. 4 Fiscal Deficits and Current Account Imbalances of the South Pacific Countries: A Case Study of Vanuatu
—T.K. Jayaraman, December 1993

No. 5 Reforms in the Transitional Economies of Asia
—Pradamuna B. Rana, December 1993

No. 6 Environmental Challenges in the People’s Republic of China and Scope for Bank Assistance
—Elisabetta Capannelli and Omkar L. Shrestha, December 1993

No. 7 Sustainable Development Environment and Poverty Nexus
—K.F. Jalal, December 1993

No. 8 Intermediate Services and Economic Development: The Malaysian Example
—Sutanu Behuria and Rahul Khullar, May 1994

No. 9 Interest Rate Deregulation: A Brief Survey of the Policy Issues and the Asian Experience
—Carlos J. Glower, July 1994

No. 10 Some Aspects of Land Administration in Indonesia: Implications for Bank Operations
—Sutanu Behuria, July 1994

No. 11 Demographic and Socioeconomic Determinants of Contraceptive Use among Urban Women in the Melanesian Countries in the South Pacific: A Case Study of Port Vila Town in Vanuatu
—T.K. Jayaraman, February 1995

No. 53 The Economic Benefits of Potable Water Supply Projects to Households in Developing Countries
—Dale Whittington and Venkateswarlu Swarna, January 1994

No. 54 Growth Triangles: Conceptual Issues and Operational Problems
—Min Tung and Myo Thant, February 1994

No. 55 The Emerging Global Trading Environment and Developing Asia
—Arvind Panagariya, M.G. Quibria, and Narhari Rao, July 1996

No. 56 Aspects of Urban Water and Sanitation in the Context of Rapid Urbanization in Developing Asia
—Ernesto M. Pernia and Stella LF. Alabastro, September 1997

No. 57 Challenges for Asia’s Trade and Environment

No. 58 Economic Analysis of Health Sector Projects: A Review of Issues, Methods, and Approaches
—Ramesh Adhikari, Paul Gertler, and Anneli Lagman, March 1999

No. 59 The Asian Crisis: An Alternate View
—Rajiv Kamar and Bibek Debroy, July 1999

No. 60 Social Consequences of the Financial Crisis in Asia
—James C. Knowles, Ernesto M. Pernia, and Mary Racleis, November 1999

OCCASIONAL PAPERS (OP)

No. 12 Managing Development through Institution Building
—Hilton L. Root, October 1995

No. 13 Growth, Structural Change, and Optimal Poverty Interventions
—Biplab Dasgupta, November 1995

No. 14 Private Investment and Macroeconomic Environment in the South Pacific Island Countries: A Cross-Country Analysis
—T.K. Jayaraman, October 1996

No. 15 The Rural-Urban Transition in Viet Nam: Some Selected Issues
—Sudipto Mundle and Brian Van Arkadie, October 1997

No. 16 A New Approach to Setting the Future Transport Agenda
—Roger Allport, Geoff Key, and Charles Melhuish, June 1998

No. 17 Adjustment and Distribution: The Indian Experience
—Sudipto Mundle and V.B. Tulasidhara, June 1998

No. 18 Tax Reforms in Viet Nam: A Selective Analysis
—Sudipto Mundle, December 1998

No. 19 Surges and Volatility of Private Capital Flows to Asian Developing Countries: Implications for Multilateral Development Banks
—Pradamuna B. Rana, December 1998

No. 20 The Millennium Round and the Asian Economies: An Introduction
—Dilip K. Das, October 1999

No. 21 Occupational Segregation and the Gender Earnings Gap
—Joseph E. Zveglich, Jr. and Yana van der Meulen Rodgers, December 1999

No. 22 Information Technology: Next Locomotive of Growth?
—Dilip K. Das, June 2000
SPECIAL STUDIES, COMPLIMENTARY (SSC)
(Published in-house; Available through ADB Office of External Relations; Free of Charge)

1. Improving Domestic Resource Mobilization Through Financial Development: Overview September 1985
5. Financing Public Sector Development Expenditure in Selected Countries: Overview January 1988
7. Financing Public Sector Development Expenditure in Selected Countries: Bangladesh June 1988
8. Financing Public Sector Development Expenditure in Selected Countries: India June 1988
11. Financing Public Sector Development Expenditure in Selected Countries: Pakistan June 1988
12. Financing Public Sector Development Expenditure in Selected Countries: Philippines June 1988
13. Financing Public Sector Development Expenditure in Selected Countries: Thailand June 1988
17. Foreign Trade Barriers and Export Growth

No. 2 Multivariate Statistical and Graphical Classification Techniques Applied to the Problem of Grouping Countries —I.P. David and D.S. Maligalig, March 1985
No. 3 Gross National Product (GNP) Measurement Issues in South Pacific Developing Member Countries of ADB —S.G. Tiwari, September 1985
No. 4 Estimates of Comparable Savings in Selected DMCs —Hanansto Sigit, December 1985
No. 5 Keeping Sample Survey Design and Analysis Simple —I.P. David, December 1985
No. 6 External Debt Situation in Asian Developing Countries —I.P. David and Jungsoo Lee, March 1986
No. 7 Study of GNP Measurement Issues in the South Pacific Developing Member Countries. Part I: Existing National Accounts of SPDMCs—Analysis of Methodology and Application of SNA Concepts —P. Hodgkinson, October 1986
No. 8 Study of GNP Measurement Issues in the South Pacific Developing Member Countries. Part II: Factors Affecting Intercountry Comparability of Per Capita GNP —P. Hodgkinson, October 1986
No. 9 Survey of the External Debt Situation in Asian Developing Countries, 1985 —Jungsoo Lee and I.P. David, April 1987
No. 17 Purchasing Power Parity in Asian Developing Countries: A Co-Integration Test —Min Tang and Ronald Q. Butlong, April 1994
No. 18 Capital Flows to Asian and Pacific Developing Countries: Recent Trends and Future Prospects —Min Tang and James Villafuerte, October 1995
SPECIAL STUDIES, ADB (SS, ADB)
(Published in-house; Available commercially through ADB Office of External Relations)

1. Rural Poverty in Developing Asia
 Edited by M.G. Quibria
 Vol. 1: Bangladesh, India, and Sri Lanka, 1994
 $35.00 (paperback)
 Vol. 2: Indonesia, Republic of Korea, Philippines, and Thailand, 1996
 $35.00 (paperback)

2. External Shocks and Policy Adjustments: Lessons from the Gulf Crisis
 Edited by Naved Hamid and Shahid N. Zakhid, 1995
 $15.00 (paperback)

3. Gender Indicators of Developing Asian and Pacific Countries
 Asian Development Bank, 1993
 $25.00 (paperback)

 Edited by Ernesto Pernia, 1994
 $20.00 (paperback)

5. Indonesia-Malaysia-Thailand Growth Triangle: Theory to Practice
 Edited by Myo Thant and Min Tang, 1996
 $15.00 (paperback)

6. Emerging Asia: Changes and Challenges
 Asian Development Bank, 1997
 $30.00 (paperback)

7. Asian Exports
 Edited by Dilip Das, 1999
 $35.00 (paperback)
 $55.00 (hardbound)

8. Mortgage-Backed Securities Markets in Asia

9. Corporate Governance and Finance in East Asia: A Study of Indonesia, Republic of Korea, Malaysia, Philippines and Thailand
 Vol. 1, 2000 $10.00 (paperback)
 Vol. 2, 2001 $15.00 (paperback)

10. Financial Management and Governance Issues
 Asian Development Bank, 2000
 Cambodia $10.00 (paperback)
 People's Republic of China $10.00 (paperback)
 Mongolia $10.00 (paperback)
 Pakistan $10.00 (paperback)
 Papua New Guinea $10.00 (paperback)
 Uzbekistan $10.00 (paperback)
 Viet Nam $10.00 (paperback)
 Selected Developing Member Countries $10.00 (paperback)

11. Guidelines for the Economic Analysis of Projects
 Asian Development Bank, 1997
 $10.00 (paperback)

 Asian Development Bank, 1999
 $15.00 (hardbound)

 Asian Development Bank, 2000
 $10.00 (paperback)

SPECIAL STUDIES, OUP (SS,OUP)
(Co-published with Oxford University Press; Available commercially through Oxford University Press Offices, Associated Companies, and Agents)

1. Informal Finance: Some Findings from Asia
 Prabhu Ghate et. al., 1992
 $15.00 (paperback)

2. Mongolia: A Centrally Planned Economy in Transition
 Asian Development Bank, 1992
 $15.00 (paperback)

3. Rural Poverty in Asia, Priority Issues and Policy Options
 Edited by M.G. Quibria, 1994
 $25.00 (paperback)

4. Growth Triangles in Asia: A New Approach to Regional Economic Cooperation
 Edited by Myo Thant, Min Tang, and Hiroshi Kakazu
 1st ed., 1994
 Revised ed., 1998
 $36.00 (hardbound)

 $18.00 (paperback)

 Edited by M.G. Quibria, 1995
 $15.00 (paperback)
 $36.00 (hardbound)

7. From Centrally Planned to Market Economies:
 The Asian Approach
 Edited by Pradunnao B. Rana and Naved Hamid, 1995
 Vol. 1: Overview
 $36.00 (hardbound)
 Vol. 2: People's Republic of China and Mongolia
 $50.00 (hardbound)
 Vol. 3: Lao PDR, Myanmar, and Viet Nam
 $50.00 (hardbound)

8. Financial Sector Development in Asia
 Edited by Shahid N. Zakhid, 1995
 $50.00 (hardbound)

9. Financial Sector Development in Asia: Country Studies
 Edited by Shahid N. Zakhid, 1995
 $55.00 (hardbound)

 Christine P.W. Wong, Christopher Heady, and Wing T. Woo, 1995
 $15.00 (paperback)

11. Current Issues in Economic Development:
 An Asian Perspective
 Edited by M.G. Quibria and J. Malcolm Dowling, 1996
 $50.00 (hardbound)

12. The Bangladesh Economy in Transition
 Edited by M.G. Quibria, 1997
 $20.00 (hardbound)

13. The Global Trading System and Developing Asia
 Edited by Arvind Panagariya, M.G. Quibria, and Narhari Rao, 1997
 $55.00 (hardbound)

14. Social Sector Issues in Transitional Economies of Asia
 Edited by Douglas H. Brooks and Myo Thant, 1998
 $25.00 (paperback)
 $55.00 (hardbound)

15. Rising to the Challenge in Asia: A Study of Financial Markets
 Asian Development Bank, 1999
 Vol. 1 $20.00 (paperback)
 Vol. 2 $15.00 (paperback)
 Vol. 3 $25.00 (paperback)
 Vols. 4-12 $20.00 (paperback)
SERIALS
(Co-published with Oxford University Press; Available commercially through Oxford University Press Offices, Associated Companies, and Agents)

1. Asian Development Outlook (ADO; annual)
 $36.00 (paperback)

2. Key Indicators of Developing Asian and Pacific Countries (KI; annual)
 $35.00 (paperback)

JOURNAL
(Published in-house; Available commercially through ADB Office of External Relations)

1. Asian Development Review (ADR; semiannual)
 $5.00 per issue; $8.00 per year (2 issues)