INFRASTRUCTURE IN CENTRAL ASIA AND CAUCASIA

Ghulam Samad and Qaisar Abbas

No. 1202
December 2020

Asian Development Bank Institute
The Working Paper series is a continuation of the formerly named Discussion Paper series; the numbering of the papers continued without interruption or change. ADBI's working papers reflect initial ideas on a topic and are posted online for discussion. Some working papers may develop into other forms of publication.

The Asian Development Bank refers to “China” as the People’s Republic of China.

In this report, “$” refers to United States dollars.

Suggested citation:

Please contact the authors for information about this paper.

Emails: ghulam.samad@carecinstitute.org, qaisar.abbas@carecinstitute.org

We appreciate the research inputs in data collection, tabulations, and figure formulations of Ghulam Nabi, Research Coordinator, PIDE, Islamabad. We are also thankful for the support and research inputs of Yao Tong and Ziyi Xiao (Research Officers at the CAREC Institute). We appreciate the valuable comments and continued support of the CAREC Institute (CI) management namely, Syed Shakeel Shah, Director CI; Ziqian Liang, DD1; Iskandar Abdullaev, DD2; and Tamar Berdzenishvilii, Senior Knowledge Specialist. The valuable inputs by Bihong Huang and Dina Azhgaliyeva (Research Fellows at ADBI) are highly appreciated.

Asian Development Bank Institute
Kasumigaseki Building, 8th Floor
3-2-5 Kasumigaseki, Chiyoda-ku
Tokyo 100-6008, Japan

Tel: +81-3-3593-5500
Fax: +81-3-3593-5571
URL: www.adbi.org
E-mail: info@adbi.org

© 2020 Asian Development Bank Institute
Abstract

Without realizing the importance of soft infrastructure, hard infrastructure cannot ensure a significant impact on sustained economic development. Unfortunately, Central Asia and Caucasia regions have continued to rely on a physical development model that has resulted in generating revenue but has failed to embed a sustained growth pattern in these countries. This paper highlights where Central Asia and Caucasia regions stand in terms of physical and soft infrastructure. A gradual improvement in physical infrastructure is observed, however, the infrastructure development pattern is uneven. Tajikistan and the Kyrgyz Republic are catching up with the rest of the region. The utilization of infrastructure depends on regional infrastructure connectivity which shows gradual improvement but still faces challenges, for example, mandatory transloading, corruption and inappropriate practices, containerization availability, and multi-transport mode delays. To overcome infrastructure development and connectivity challenges, massive infrastructure investment is required but is currently quite low. To tap infrastructure financing, appropriate financing strategies like developing public–private partnerships, attracting foreign direct investment, and exploring the possibility of the bond market are required. To improve the infrastructure development landscape, and resolve infrastructure connectivity and financing issues, the region requires an appropriate institutional and regulatory environment.

Keywords: infrastructure, transportation infrastructure, roles of government

JEL Classification: O180, R420, H110
Contents

1. INTRODUCTION ... 1

2. POPULATION AND ECONOMIC PROFILES OF CENTRAL ASIA 3

3. INFRASTRUCTURE LANDSCAPE IN CENTRAL ASIA AND CAUCASIA 5
 3.1 Road Infrastructure .. 6
 3.2 Rail Infrastructure .. 6
 3.3 Air Infrastructure ... 8
 3.4 Ports ... 9
 3.5 Water and Sanitation ... 10
 3.6 Telecommunications .. 11
 3.7 Energy .. 12

4. CONNECTIVITY IN CENTRAL ASIA AND CAUCASIA ... 14

5. INFRASTRUCTURE INVESTMENT REQUIREMENTS ... 16

6. INVESTMENT STRATEGIES TO FINANCE INFRASTRUCTURE INVESTMENT
 AND CHALLENGES .. 17

7. CONCLUSION ... 18

REFERENCES .. 19
1. INTRODUCTION

The role of infrastructure\(^1\) in economic development and the growth of the economy is paramount. Infrastructure not only makes a significant impact on economic development, but infrastructure development eventually supports economic growth, trade, and investment. Conversely, infrastructure deficiency creates bottlenecks to economic development, growth, trade, and investment. However, physical infrastructure alone cannot contribute to the economic development of an economy, unless accompanied by soft\(^2\) infrastructure. “History offers much evidence of the impacts of transformational infrastructure successes and failures” (McCartney 2018). Three examples, which are not directly related to the Central Asian economies (landlocked economies), serve to demonstrate the importance of soft infrastructure along with physical infrastructure in order to achieve a sustained growth pattern.

The Panama Canal not only reduces the travel time\(^3\) between the Atlantic and Pacific Oceans, but it also connects these two oceans to avoid 8,000 miles around the Southern tip of South America. Through this facilitation, the annual shipping traffic has risen exponentially to 815,000 in 2012 from 1,000 in 1914 generating $2.4 billion in tolls (PIDE Research Brief 2019). Similarly, the development of road networks in Pakistan and dry ports in Central Asia reduces both the time and cost of trade, but unfortunately these developments did not show up in its sustained growth pattern.

If we look (see Figure 1) at GDP per capita growth (%), it does not reflect a sustainable increasing pattern. Unfortunately, the physical infrastructure model was adopted in Panama and less importance is given to improving soft infrastructure to achieve a sustainable development pattern.

\(^1\) Roads, railways network, energy, water and sanitation, seaports and airports, and telecommunications.

\(^2\) Rules and regulations that support the facilitation of trade and overall economic development.

\(^3\) From 25 hours to 12–15 hours.
Similarly, another humongous project, the Suez Canal, again not only connects the Mediterranean Sea to the Red Sea but it also reduces the distance by 7,000 km by avoiding the South Atlantic and Southern Indian Oceans (PIDE Research Brief 2019). This project also substantially increases shipping traffic generating $5.4 billion in tolls in 2017–18. Like the Panama Canal, the Suez Canal is not contributing to a sustainable increasing growth pattern (see Figure 2).

![Figure 2: Growth Pattern](image)

Finally, the Greater Mekong Sub-region also contributes to a high cost of doing business due to inefficient cross-border procedures; lack of a customs transit system; poor logistic services; and non-tariff measures. With these inadequate measures, the cost of exporting a container of cargo from Cambodia increased $735 in 2005 to $795 in 2014 (Nguyen 2016). One of the main reasons along with internal intricacies in economic policies is the need to improve soft infrastructure so that soft infrastructure can combine with physical infrastructure to achieve a sustained growth pattern.

This study not only examines the hard infrastructure landscape of the Central Asian and Caucasus economies but will try to highlight the significance of soft infrastructure in order to achieve a sustained development pattern. Soft infrastructure refers to the efficiency and effectiveness of regulatory indicators that include regulations, transparency, irregular payments, favoritism, and measures to combat corruption (Ismail and Mahyideen 2015). Soft infrastructure improvement brings efficiency to economic activities, and around the world, efficient infrastructure for any country provides enormous opportunities to boost its economic activities. It increases the production capacity and reduces the cost of production. And, it also improves transport connectivity through efficient transport networks and telecommunication. Infrastructure development expands market connectivity and creates efficient markets (reducing time and price

4. The People’s Republic of China, Viet Nam, the Lao People’s Democratic Republic, Myanmar, Thailand, and Cambodia in 1992 by ADB.
5. Given the limited word requirements, this paper will not discuss its positive economic ramifications.
6. Armenia, Azerbaijan, Georgia, Kazakhstan, the Kyrgyz Republic, Tajikistan, Turkmenistan, Uzbekistan.
7. Framework for Economic Growth (FEG) defined soft infrastructure as the organization of institutions in such a way as to support innovations and best use of resources to gear up productivity.
divergence), that eventually generates more jobs. To achieve optimal impact both soft and hard infrastructure are equally important (Kingcombe 2014).

The paper is organized as follows: Section 2 will discuss the economic profile of Central Asia\(^8\) and the Caucasus to educate the reader on where the Central Asian region is standing economically. Section 3 will build on the infrastructure landscape of the Central Asian economies. Infrastructure connectivity is discussed in section 4. To meet the infrastructure gap, section 5 will discuss infrastructure investment requirements and challenges. Section 6 will shed light on infrastructure investment strategies and possible challenges. Finally, section 7 will conclude and discuss policy recommendations.

2. POPULATION AND ECONOMIC PROFILES OF CENTRAL ASIA

Increasing population is putting unprecedented pressure on natural resources. Fortunately, Central Asian and Caucasian countries’ overall population is not stressing natural resources, however, the exploration of natural resources and productive utilization is one of the main challenges of the Central Asian and Caucasian economies. Central Asia and Caucasia are home to 89.12 million people. Its total population is equivalent to 0.95% of the total world population and approximately 48% of the population lives in urban areas. Figure 3 shows the distribution of the population in Central Asian and Caucasian countries. Uzbekistan has the largest populated country in the region with 32.95 million people, and Armenia is the least populated country with 2.95 million people.

![Figure 3: Population Share 2018](source)

\(^8\) Armenia, Azerbaijan, Georgia, Kazakhstan, the Kyrgyz Republic, Tajikistan, Turkmenistan, and Uzbekistan.
The region is a unique blend of diverse features, economic, political, cultural, and geographical that influence economic growth and have shaped policy through the economic transformation in the last 30 years since independence from the Soviet Union. Central Asia is blessed with natural resources that include gold, crude oil, natural gas, and other metals. Crude oil and natural gas reserves are held by Kazakhstan and Turkmenistan while Armenia, the Kyrgyz Republic, Tajikistan, and Uzbekistan have gold reserves, and Kazakhstan also has the largest uranium reserves.

The region stretches across a vast geographical area and is strategically positioned as a gateway to Europe and Asia and provides many potential opportunities for trade and investment. After independence, Central Asian and Caucasian countries transformed from state-controlled economies to market economies. The economies have embarked on market-oriented reforms that emphasize macroeconomic stabilization, trade openness, and private sector development. The governments in the region are implementing structural reforms to improve competition in the markets; raising the living standard of their people; adopting industrialization; and improving services via public policies and other measures that increase opportunities for the people in the region.

The overall GDP growth rate for these regions was 2.4% in 2016, the lowest GDP reported in the last five years. The average GDP growth rate from 2014 to 2020 was 5.1% to 3.9% in the region because negative GDP growth rate was recorded in 2016 for Azerbaijan. Figure 4 shows that Tajikistan has the highest GDP in the region, Tajikistan’s GDP remained more than 7.0% from 2017 to 2020. Whereas Armenia’s GDP grew from -3.1% to 2.4% from 2016 to 2020.

Average growth in Central Asia and Caucasia declined by 2.8 percentage points in 2014–19 from 5.1% to 2.4%. Most of this decline is attributed to the shrinking labor supply that played a key role in declining productivity growth that eventually resulted in low average growth in Central Asia and Caucasia.

![Figure 4: GDP Growth Rate at Constant Price](source: Asian Development Bank (2019).)
3. INFRASTRUCTURE LANDSCAPE IN CENTRAL ASIA AND CAUCASIA

Infrastructure\(^9\) has shown gradual improvement since 2007–08 (see Figure 5). Tajikistan and the Kyrgyz Republic are still catching up with the other countries. Similarly, Armenia is lying in the middle above Tajikistan and the Kyrgyz Republic, but below Azerbaijan, Kazakhstan, and Georgia. The overall infrastructure situation in Azerbaijan, Kazakhstan, and in Georgia is much better than the other mentioned countries. The Global Competitiveness Index (World Economic Forum 2019) illustrated the overall infrastructure ranking figures that reveal the slower development pace in the region. However, the score shows improvement as revealed in Figure 5: The index score for Armenia increased from 2.84 to 3.85 between 2007 and 2018, and all countries in the region showed similar improvement.

These countries have introduced a number of infrastructure development programs. The Belt and Road Initiative (BRI) agreement was signed to boost the pace of development. Infrastructure improvement was established in the region which is providing opportunities to trigger the pace of developmental strategies and fostering high-tech industries, trade, and investment, and has established many important institutions to pool resources toward an export orientation. The research institute in the region is playing a significant role in developing new technology and adopting new priorities towards problem-solving methods. Countries are seeking to increase efficiency in productivity to strengthen economic stability and accelerate the pace of growth. The region is also investing in modern technologies, education, health, and other infrastructure.

![Figure 5: Infrastructure Global Competitiveness Index (1–7)](source: World Economic Forum (2018)).

\(^9\) According to the Global Competitiveness Index: To assess the general infrastructure (e.g., overall infrastructure, transport, telephone, energy) in your country? [1 = extremely underdeveloped; 7 = extensive and efficient by international standards].
Transport Infrastructure

With the exception of Georgia that has a coastline on the Black Sea, the rest of Central Asia and Caucasus regions are landlocked, therefore, transport in the region mainly occurs by road and rail networks.

3.1 Road Infrastructure

In landlocked economies, road and rail networks have an incredible role in enhancing economic activities. Both of these entities connect markets and improve efficiency (reduction in prices). Some of these economies like Azerbaijan have the highest road density in Central Asia. The trunk road network is managed by Azeravtoyol, a semiautonomous state-owned company responsible for construction, rehabilitation, and maintenance. Kazakhstan has the largest geographical area in the region but has a very low road density. The trunk road network falls under the responsibility of the Committee of Roads under the Ministry of Investment and Development. Similarly, different ministries and authorities manage road construction, rehabilitation, and maintenance in the region. The average road density is around 28 km/100 km², which in comparison is much lower than South Asia and other regions like East Asia.

Table 1: Road Infrastructure

<table>
<thead>
<tr>
<th>General Road Data</th>
<th>AZE</th>
<th>GEO</th>
<th>KAZ</th>
<th>KGZ</th>
<th>TAJ</th>
<th>TKM</th>
<th>UZB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total roads (km)</td>
<td>59,000</td>
<td>21,800</td>
<td>96,718</td>
<td>34,810</td>
<td>26,767</td>
<td>58,592</td>
<td>18,372</td>
</tr>
<tr>
<td>Trunk road network (km)</td>
<td>19,016</td>
<td>6,824</td>
<td>23,485</td>
<td>18,810</td>
<td>14,067</td>
<td>13,644</td>
<td>42,530</td>
</tr>
<tr>
<td>Rural/urban road network (km)</td>
<td>40,000</td>
<td>15,000</td>
<td>73,233</td>
<td>16,000</td>
<td>12,700</td>
<td>44,948</td>
<td>141,194</td>
</tr>
<tr>
<td>Land area (km²)</td>
<td>86,663</td>
<td>69,490</td>
<td>2,699,700</td>
<td>191,800</td>
<td>469,930</td>
<td>425,400</td>
<td></td>
</tr>
<tr>
<td>Road density (km/100 km²)</td>
<td>68.1</td>
<td>31.4</td>
<td>3.6</td>
<td>18.1</td>
<td>19.3</td>
<td>12.5</td>
<td>43.2</td>
</tr>
</tbody>
</table>

AZE = Azerbaijan, GEO = Georgia, KAZ = Kazakhstan, km = kilometer, km² = square kilometer, KGZ = Kyrgyz Republic, TAJ = Tajikistan, TUR = Turkmenistan, UZB = Uzbekistan.

3.2 Rail Infrastructure

The rail networks are the backbone of any economy, used for the distribution of goods from one place to another and also for passengers’ travel. The rail network in Central Asia is extensive, it connects Kazakhstan, Uzbekistan, and Turkmenistan with links to the Kyrgyz Republic and Tajikistan. The rail network connects seaports on the Persian Gulf, the Mediterranean Sea, and the Black Sea. Also, the rail network provides potential transit to East Asia, Southern and Central Europe. In addition, the rail network connects the industrial sector of northern Kazakhstan with the northern border of the region. This mainline provides a junction between Kazakhstan, the European Russian Federation, and the People’s Republic of China (PRC) to the northeast of Kazakhstan.

Figure 6 shows the extent of the Kazakhstan railway network that connects the PRC in East Asia, the European Russian Federation to the north of Kazakhstan, and the Kyrgyz Republic to the south of Kazakhstan. The total length of the Kazakhstan railways was 16,040.3 kilometers in 2017, it grew 12.9% over a decade. The Kyrgyz Republic has a limited rail network but it is important due to its connectivity with the PRC to the east, through Bishkek with Kazakhstan, and through Tashkent.

10 Road length per unit of area.
with Uzbekistan and Tajikistan, respectively. Interestingly, the railway length in Turkmenistan doubled from 3,181 kilometers in 2007 to 7,680 kilometers in 2017.

Figure 6: Railway Length

Table 2 shows data on the ten-year change for goods, transport, and passenger transport.

In Armenia goods transport by train has more than doubled, but passenger train travel has decreased by 8.2% from 2007 to 2017. Tajikistan and Uzbekistan show a significant increase in the last 10 years for transporting both goods and passengers by train.

Table 2: Railways for Goods and Passengers

<table>
<thead>
<tr>
<th></th>
<th>Goods Transported</th>
<th>Passengers Carried</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2007 (million ton/km)</td>
<td>2017 (million ton/km)</td>
</tr>
<tr>
<td>Armenia</td>
<td>340</td>
<td>689</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>10,374</td>
<td>4,633</td>
</tr>
<tr>
<td>Georgia</td>
<td>6,928</td>
<td>2,963</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>200,752</td>
<td>206,258</td>
</tr>
<tr>
<td>Kyrgyz Republic</td>
<td>848</td>
<td>935</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>1,274</td>
<td>165</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>21,594</td>
<td>22,940</td>
</tr>
<tr>
<td>Turkmenistan</td>
<td>10,973</td>
<td>13,327</td>
</tr>
</tbody>
</table>

3.3 Air Infrastructure

Air transport is one of the safest means of transportation and has potential benefits to generate jobs and inject billions of dollars into Central Asian and Caucasian economies. It reduces the distance around the globe and helps to create a feasible environment for business. Air transport has an extensive economic impact; direct, indirect, and induced impacts.

Figure 7: Number of Passengers Traveling by Air Transport

Like other regions, Central Asian and Caucasian countries also heavily depend on air transport. Figure 7 shows the number of passengers that travel by air transport; the overall number of passengers traveling in the region has increased over time. Kazakhstan’s passenger movement has increased by 82% from 2008 to 2018 and reached 7.1 million passengers in 2018. Similarly, Armenia has also increased the number of passenger movements.

Table 3: Air Transport Infrastructure, Transport, and Service Quality

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rank Score</td>
<td>Rank Score</td>
<td>Rank Score</td>
<td>Rank Score</td>
</tr>
<tr>
<td>Armenia</td>
<td>52 4.8</td>
<td>86 46.7</td>
<td>93 33.2</td>
<td>67 60.2</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>24 5.6</td>
<td>53 60.6</td>
<td>79 41.9</td>
<td>12 79.3</td>
</tr>
<tr>
<td>Georgia</td>
<td>69 4.3</td>
<td>82 48.4</td>
<td>81 40.6</td>
<td>86 56.2</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>90 4.0</td>
<td>75 50.7</td>
<td>72 46.4</td>
<td>89 54.9</td>
</tr>
<tr>
<td>Kyrgyz Republic</td>
<td>120 3.1</td>
<td>124 31.7</td>
<td>104 30.0</td>
<td>133 33.4</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>70 4.3</td>
<td>105 40.8</td>
<td>121 23.8</td>
<td>76 57.9</td>
</tr>
</tbody>
</table>

Note: GCI Rank: It posits the quality of infrastructure out of total countries (141). GCI Value (1–7): 1 = extremely underdeveloped; 7 = extensive and efficient by international standards. Total GCI score is 100, a score closer to 100 shows higher competitiveness.

Central Asian and Caucasian countries’ air transport infrastructure is categorized in Table 3: Azerbaijan has the finest quality of air transport infrastructure (24/144) followed by Georgia (69/144) and Tajikistan (70/144). The air transport connectivity is below average (score of 50), the regional air connectivity average value of 36 is also not acceptable if we compare with other advanced regions (East Asia, EU). Similarly, the air transport efficiency is relatively on a par with emerging economies but still less than the advanced regions as mentioned.

3.4 Ports

Both sea and dry ports are important for economic activity in coastal areas where they bring important benefits to the economy. Ports provide multiple employment opportunities and mobilize a social function. Seaways and ports transport a huge quantity of goods between countries at the very cheapest price as compared to any other source. Industries require a safe and cheap means of exporting final goods and importing raw materials.

![Figure 8: Quality of Port Infrastructure (1–7)](source: World Economic Forum (2018)).

Figure 8 shows the quality of port infrastructure rated 1 to 7. Azerbaijan and Georgia have the finest quality of infrastructure in the region while Tajikistan and the Kyrgyz Republic have undeveloped infrastructure. Figure 9 indicates the international ranking for the ports; the overall ranking of port infrastructure is low except Azerbaijan which ranked 29 in 2018 and 25 in 2019.

11 [1 = extremely underdeveloped; 7 = extensive and efficient by international standards].
3.5 Water and Sanitation

Water quality indicators are measured by the Global Competitiveness Index (GCI) in terms of infrastructure, reliability of water supply, and exposure to unsafe drinking water. Water infrastructure and quality in Central Asia is ranked in Table 4. Armenia has ranked 49/144 countries in the world and scored 84.18 points out of a potential 100. The Kyrgyz Republic has the lowest water infrastructure in the region ranked 85/144 and a score of 67.22/100. Similarly, Armenia has ranked 59/144 and 34/144 for the reliability of water supply and exposure to unsafe drinking water respectively in the region. Whereas Armenia and Azerbaijan score 98.85/100 and 69.50/100 for the reliability of water supply and exposure to unsafe drinking water.

<table>
<thead>
<tr>
<th>Table 4: Water Infrastructure Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Infrastructure 2018–19</td>
</tr>
<tr>
<td>Rank</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Armenia</td>
</tr>
<tr>
<td>Azerbaijan</td>
</tr>
<tr>
<td>Georgia</td>
</tr>
<tr>
<td>Kazakhstan</td>
</tr>
<tr>
<td>Kyrgyz Republic</td>
</tr>
<tr>
<td>Tajikistan</td>
</tr>
</tbody>
</table>

Figure 10 depicts the annual percentage of water withdrawn for residential, agricultural, and industrial use. The highest water consumption is by the agriculture sector in the region as shown (see Figure 10). Residential consumption is quite low compared with that of the industry and agriculture sectors. Georgia consumes around 20% of total water for residential use whereas the Kyrgyz Republic uses less than 5% of total water consumption.

Figure 10: Freshwater Withdrawal for Agriculture, Industry, and Domestic

![Chart showing water withdrawal percentages](source: World Bank. World Development Indicators 2019.)

3.6 Telecommunications

The telecommunication sector has undergone many changes over the last fifty years since the countries started developing telecommunication technologies. The telecommunication sector is an important focus as it is essential for economic infrastructure. A huge number of changes have taken place in the telecommunication industry over the last two decades with the emergence of the internet, broadband, and many electronic devices with software applications.

3.6.1 Fixed Telephone and Broadband

Figure 11 shows the fixed telephone line and broadband as per 100 subscribers in Central Asia and Caucasia. Kazakhstan has the largest number of fixed telephone subscribers (20 out of 100 people, total subscribers 3,686,600) followed by Georgia, Azerbaijan, and Armenia while lowest fixed telephone line subscribers in the region. Whereas Georgia and Azerbaijan have the highest number of broadband subscribers that is 19 and 18 respectively per 100 people in the region.
3.6.1 Mobile Phone Users

The significance of mobile phone penetration has increased multiple times. Figure 12 shows mobile phone trends in Central Asia and Caucasus. Kazakhstan and Turkmenistan have a larger number of mobile phone users while the Kyrgyz Republic has the lowest number of users.

3.7 Energy

The energy sector plays a significant role in economic growth and raising living standards. The region is blessed with many natural resources to produce energy. Table 5 shows natural gas has a larger share in electricity production except in the Kyrgyz Republic and Tajikistan. Kazakhstan produces 71.65% of electricity from coal, while the Kyrgyz Republic electricity production from hydropower is 85.2%, while Tajikistan has
most utilized its hydrological resources for electricity production. Moreover, Azerbaijan, Kazakhstan, Turkmenistan, and Uzbekistan are crude oil and natural gas exporting countries while Kazakhstan also has large coal deposits. Tajikistan, the Kyrgyz Republic, and Georgia are rich in hydro resources.

Table 5: Electricity Production, Source, and Access

<table>
<thead>
<tr>
<th>Country</th>
<th>Electricity Production (kWh billion)</th>
<th>Sources of Electricity Production</th>
<th>Access to Electricity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armenia</td>
<td>7</td>
<td>Coal: 0, Natural Gas: 35, Crude Oil: 28, Hydro-power: 0.1</td>
<td>31% of Total Population: 100</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>23</td>
<td>Coal: 0, Natural Gas: 86, Crude Oil: 6, Hydro-power: 0.4</td>
<td>0% of Total Population: 100</td>
</tr>
<tr>
<td>Georgia</td>
<td>10</td>
<td>Coal: 0, Natural Gas: 22, Crude Oil: 78, Hydro-power: 0</td>
<td>0% of Total Population: 100</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>95</td>
<td>Coal: 71, Natural Gas: 18, Crude Oil: 1, Hydro-power: 0.2</td>
<td>0% of Total Population: 100</td>
</tr>
<tr>
<td>Kyrgyz Republic</td>
<td>14</td>
<td>Coal: 13, Natural Gas: 1, Crude Oil: 85, Hydro-power: 0</td>
<td>0% of Total Population: 100</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>17</td>
<td>Coal: 1, Natural Gas: 0, Crude Oil: 98, Hydro-power: 0</td>
<td>0% of Total Population: 99.7</td>
</tr>
<tr>
<td>Turkmenistan</td>
<td>18</td>
<td>Coal: 100, Natural Gas: 0, Crude Oil: 0, Hydro-power: 0</td>
<td>0% of Total Population: 100</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>54</td>
<td>Coal: 4, Natural Gas: 100, Crude Oil: 0.3, Hydro-power: 20</td>
<td>0% of Total Population: 100</td>
</tr>
</tbody>
</table>

World Development Indicators (WDI 2019) show the abundance of electricity production in the region. For electricity infrastructure, Kazakhstan and Georgia rank 19 and 36 out of 144 countries by GCI, and all the countries in the region score 90+ for electricity infrastructure. Similar to other countries in the world, the central Asian countries are faced with the challenges of electricity transmission and distribution loss and are ranked from 19 for Kazakhstan to 115 for the Kyrgyz Republic. Electricity prices are below cost and electrification rate is ranked 2 for all central Asian countries expect the Kyrgyz Republic.

Table 6: Electricity Infrastructure, Rate, and Quality

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Armenia</td>
<td>63</td>
<td>71</td>
<td>2</td>
<td>77</td>
<td>4.8</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>54</td>
<td>59</td>
<td>2</td>
<td>50</td>
<td>5.5</td>
</tr>
<tr>
<td>Georgia</td>
<td>36</td>
<td>36</td>
<td>2</td>
<td>68</td>
<td>5.0</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>19</td>
<td>19</td>
<td>2</td>
<td>82</td>
<td>4.6</td>
</tr>
<tr>
<td>Kyrgyz Republic</td>
<td>94</td>
<td>115</td>
<td>68</td>
<td>102</td>
<td>3.6</td>
</tr>
<tr>
<td>Tajikistan</td>
<td>90</td>
<td>107</td>
<td>2</td>
<td>100</td>
<td>3.7</td>
</tr>
</tbody>
</table>

4. CONNECTIVITY IN CENTRAL ASIA AND CAUCASIA

The infrastructure landscape is less beneficial if it is not adequately connected. The Central Asia Regional Economic Cooperation (CAREC) Program has identified six corridors (see Table 7 and Figure 13) in Central Asia to enhance developmental activities through greater economic cooperation and stronger trade integration. These corridors are intended to connect the countries across the region and offer unique opportunities for growth in global markets. It is important to see the prevailing situation of these corridors’ connectivity situation in terms of deliverability. For the CAREC member countries an empirical tool is designed to evaluate and monitor the corridors’ performance. The CAREC Performance Measurement (CPMM) report considers four indicators to evaluate and monitor the corridors’ performance and efficiency in the member countries (ADB 2019).

In 2019, the time taken at border crossing points (BCPs) remains unchanged for road transport, but we have seen an improvement (time shortened by 11.3%) for rail transport as compared to 2018. Unfortunately, the costs incurred to clear BCPs increased for both road and rail transport. In addition, a reduction is shown for travel along a corridor by both road and rail transport, however, travel time along the corridor remains slower as compared to 2018.

Still CAREC corridors for both road and rail transport are facing enormous challenges (mandatory transloading, corruption and inappropriate practices, containerization availability, and multi-transport mode delays) to ensure productive trade corridors. To overcome these challenges, the possible solutions are: the CAREC region requires improvements in infrastructure at BCPs, adoption of cost-effective procedures at BCPs, and conceptualization and implementation of bilateral and multilateral agreements.

<table>
<thead>
<tr>
<th>Corridor</th>
<th>Corridor Name</th>
<th>Connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Europe–East Asia</td>
<td>Kazakhstan, the Kyrgyz Republic, and XUAR</td>
</tr>
<tr>
<td>2</td>
<td>Mediterranean–East Asia</td>
<td>Afghanistan, Azerbaijan, Kazakhstan, the Kyrgyz Republic, Tajikistan, Turkmenistan, Uzbekistan, and XUAR</td>
</tr>
<tr>
<td>3</td>
<td>Russian Federation–Middle East and South Asia</td>
<td>Afghanistan, Kazakhstan, the Kyrgyz Republic, Tajikistan, Turkmenistan, and Uzbekistan</td>
</tr>
<tr>
<td>4</td>
<td>Russian Federation–East Asia</td>
<td>IMAR, Mongolia, and XUAR</td>
</tr>
<tr>
<td>5</td>
<td>East Asia–Middle East and South Asia</td>
<td>Afghanistan, the Kyrgyz Republic, Pakistan, Tajikistan, and XUAR</td>
</tr>
<tr>
<td>6</td>
<td>Europe–the Middle East and South Asia</td>
<td>Afghanistan, Kazakhstan, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan</td>
</tr>
</tbody>
</table>

12 The Asia Development Bank (ADB) established the Central Asia Regional Economic Cooperation (CAREC) in 1997
13 Afghanistan, Azerbaijan, the People’s Republic of China (PRC), Georgia, Kazakhstan, the Kyrgyz Republic, Mongolia, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan
14 Corridor Performance Measurement and Monitoring (CPMM)
15 (i) time taken to clear a border-crossing point (BCP); (ii) cost incurred at a BCP; (iii) cost incurred to travel a corridor sector; and (iv) speed to travel along CAREC corridors.
Figure 13: Central Asia Rail Corridors

5. INFRASTRUCTURE INVESTMENT REQUIREMENTS

It is well established that the Central Asian and Caucasian regions are lagging substantially behind in financing their infrastructure needs. A substantial amount of financing, $26 trillion for 2016–2030 or $1.7 trillion per year, is required to sustain growth and improve people’s livelihoods (Ziyodullo Parpiev). In terms of the percentage of GDP this equates to 7.8%. Figure 14 below shows total investment commitments by the region. The Central Asia and Caucasia regions’ commitments are substantially low. For both regions the peak investment years were 2006 and 2011 with approximately $19 billion and $14 billion, respectively. For the remaining years, we can see a declining trend for investment commitments. In 2019, this value is $1 billion approximately, which is much lower than the $1.7 trillion a year requirement.

Figure 14: Total Investments by Region

![Figure 14: Total Investments by Region](image)

Figure 15: Infrastructure Investments as a Share of GDP, 2011

![Figure 15: Infrastructure Investments as a Share of GDP, 2011](image)

Source: Parpiev, Z. (2018) at the joint CAREC Institute, Beijing National Accounting Institute, and ADB Institute Research Inception Conference 21–22 June, Beijing.
If we disaggregate the data, one can clearly see Central Asia infrastructure total investment in 2011 is only $0.8 billion. East and South Asia are dominating with $563 billion and $100 billion respectively. In addition, Figure 1516 shows infrastructure investment as a share of GDP in Central Asian economies is $0.8 billion which again requires investment strategies to finance investment infrastructure.

6. INVESTMENT STRATEGIES TO FINANCE INFRASTRUCTURE INVESTMENT AND CHALLENGES

To chalk out infrastructure investment strategies, the world is relying on exploring both traditional sources of finances (mostly from development expenditure, financing assistance, government guarantees, tax exemptions or reductions), and non-traditional sources of finance like attracting foreign direct investment (FDI), tapping the international bond market, and following the conducive public–private partnership (PPP) model. All of these investment strategies are helping out to some extent to finance infrastructure investment, but these opportunities have rarely delivered due to over-regulation, favoritism in government decisions, and irregular payment and bribes. Figure 16 clearly demonstrates that the regulatory environment could be one of the reasons for not providing an appropriate business environment to attract FDI, tapping the international bond market, and not appropriately delivering on PPP to finance infrastructure.

Figure 16: Regulatory Environment

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
\hline
\text{Country} & \text{TDI} & \text{FDI} & \text{Equity} & \text{Guarantees} & \text{Assistance} & \text{Tax} & \text{PPP} & \text{Regulation} & \text{Bribe} \\
\hline
\text{Tajikistan} & 20 & 50 & 30 & 10 & 50 & 5 & 20 & 10 & 0 \\
\text{Kyrgyz Republic} & 40 & 10 & 60 & 20 & 5 & 30 & 20 & 10 & 0 \\
\text{Kazakhstan} & 30 & 50 & 20 & 30 & 50 & 5 & 20 & 10 & 0 \\
\text{Georgia} & 10 & 50 & 30 & 20 & 5 & 30 & 20 & 10 & 0 \\
\text{Azerbaijan} & 40 & 10 & 60 & 20 & 5 & 30 & 20 & 10 & 0 \\
\text{Armenia} & 60 & 10 & 30 & 20 & 5 & 30 & 20 & 10 & 0 \\
\hline
\end{array}
\]

16 Once this version is submitted, and by the time we get comments and suggestions, will update to current available data.
7. CONCLUSION

Central Asia and Caucasia region requires the combination of soft infrastructure with physical infrastructure to achieve a sustained growth pattern. The overall infrastructure landscape in these economies is progressing, however, this region needs substantive measures to scale up infrastructure development. Along with infrastructure development, regional connectivity barriers need to be scaled down so that inter, intra and outside region potential trade can be expanded. Exploration of trade potential requires not only sustained infrastructure development but an appropriate infrastructure connectivity.

To overcome the challenges to infrastructure development, both traditional and non-traditional sources need to be exploited. However, having a sustainable infrastructure financing mechanism is a real challenge for these economies. To develop both traditional and non-traditional infrastructure mechanisms it is essential to improve the institutional and regulatory environment across Central Asia and Caucasia.
REFERENCES

