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Abstract 
 
Short-term electricity price forecasting has received considerable attention in recent years. 
Despite this increased interest, the literature lacks a concrete consensus on the most suitable 
forecasting approach. This study reports an extensive empirical analysis that  
we conducted to evaluate the short-term price forecasting dynamics of different regions in the 
Swedish electricity market (SEM). We utilized several forecasting approaches ranging from 
standard conditional volatility models to wavelet-based forecasting. In addition, we performed 
out-of-sample forecasting and back-testing, and we evaluated the performance  
of these models. Our empirical analysis indicates that an ARMA-GARCH framework with  
the Student’s t-distribution significantly outperforms other frameworks. We only performed 
wavelet-based forecasting based on the MAPE. The results of the robust forecasting methods 
are capable of displaying the importance of proper forecasting process design, policy 
implications for market efficiency, and predictability in the SEM. 
 
Keywords: forecasting, Swedish electricity market, GARCH modeling, multi-scale analysis 
 
JEL Classifications: C53, G17 
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1. INTRODUCTION 
Many countries are developing new energy policies to secure their energy systems, 
sustain the development of their economy, and reduce the negative environmental 
impact. Over the past few decades, Sweden, like many other European countries, has 
largely promoted renewable energy to produce green electricity while reducing the output 
from nuclear power. This has not only affected the electricity price in the long run but 
also increased its volatility in the market since the electricity production profile has shifted 
from a relatively reliable mixture of nuclear and hydraulic sources to an intermittent 
supply using wind and solar power (Tang and Rehme 2017). Therefore, understanding 
the short-term electricity price becomes more important for all the players in the market. 
Furthermore, reliable forecasting is significant in developing bidding strategies for 
electricity-generating firms alongside traders, distributional firms, and large consumers. 
On the other hand, the electricity industry is becoming more complicated. Energy 
conservation programs and energy efficiency improvements have changed the demand. 
New technologies, such as batteries for electric vehicles, have the potential to transform 
the demand pattern of electricity in the market extensively. Other energy alternatives, 
such as hydrogen, also alter the demand and shift the timing of the electricity demand 
via the storage capability. On the supply side, as previously mentioned, the electricity-
generating profile changes depending on the energy policies in a country, which again 
embeds uncertainty from a long-term perspective. In addition, the electricity price 
typically has long- and short-term seasonal cycles. Therefore, many possibly interrelated 
factors could have an influence on electricity. 
In the increasingly competitive electricity market, forecasting the day-ahead price is 
fundamental for all stakeholders. Accurate forecasting of such prices enables power 
generators to adapt their bidding tactics and consumers to derive a plan to protect 
themselves from increasing prices. Unlike the fundamentals of other commodities, the 
electricity market exhibits a unique characteristic; specifically, it is not possible to store 
electricity in significant amounts. The non-storability feature hinders the utilization of 
inventories in smoothing the shocks in the demand and supply, thereby resulting in 
increased volatility of electricity prices. Furthermore, such shocks add uncertainty  
to electricity prices. For instance, during periods of relatively low demand, power 
generators with lower marginal costs may be sufficient to accommodate the demand; 
however, an increase in the demand necessitates the utilization of additional generators 
to compensate for the demand deficit. Accurate forecasting may therefore enable 
production houses to utilize their resources better to cope with the dynamic demand from 
various regions. 
Previous studies have utilized different approaches to forecast the prices of underlying 
assets, for instance ordinary least squares (OLS) (Aye et al. 2015; Birkelund et al. 2015; 
Botterud, Kristiansen, and Ilic 2010; Danese and Kalchschmidt 2011; Van Donselaar et 
al. 2016; Haugom et al. 2011; Junttila, Myllymäki, and Raatikainen 2018; Mosquera-
López and Nursimulu 2019; Weron and Zator 2014), the error correction model and 
cointegration (Eksoz, Mansouri, and Bourlakis 2014; Fantazzini and Toktamysova 2015; 
Kalantzis and Milonas 2013; Mjelde and Bessler 2009; B. Zhu  
et al. 2019), vector autoregression (Bunn and Chen 2013; Girish, Rath, and Akram 2018; 
Junttila et al. 2018; Nakajima and Hamori 2013; Park, Mjelde, and Bessler  
2006), the autoregressive integrated moving average (ARIMA) and generalized 
autoregressive conditional heteroscedasticity (GARCH) type (Bowden and Payne 2008; 
Charwand, Gitizadeh, and Siano 2017; Ferbar Tratar 2015; Furió and Chuliá 2012; Loi 
and Jindal 2019; Rostami-Tabar et al. 2015; Tratar, Mojškerc, and Toman 2016), 
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machine learning approaches (Lolli et al. 2017; Nikolopoulos, Babai, and Bozos 2016; 
Tang and Rehme 2017; Y. Zhu et al. 2019), optimization and networks (Hasni  
et al. 2019; Le, Ilea, and Bovo 2019; Mirza and Bergland 2012; Tande 2003; Zhu, 
Mukhopadhyay, and Yue 2011), quantile smoothing (Bruzda 2019), and generalized 
additive models (Serinaldi 2011). Despite significant literature having evaluated the 
forecasting accuracy of various approaches, there is no concrete consensus regarding 
which framework is best suited to encapsulating the dynamics of the electricity markets. 
We extend the previous literature by utilizing a wavelet-based forecasting approach. In 
addition, we determine the robustness of the forecasting performance of our proposed 
framework by varying the window sizes. 
Short-term electricity price forecasting is interesting from many aspects. Understanding 
the price mechanism will enhance the investment decision, both for investors in the 
energy sector and for electricity users. Short-term electricity price forecasting has 
received considerable attention in recent years (Bowden and Payne 2008; Liu and Shi 
2013). Nevertheless, the literature lacks a concrete consensus on the most suitable 
forecasting approach to capture the dynamics of electricity markets, possibly due to the 
aforementioned challenges. We therefore conducted an extensive empirical analysis to 
evaluate the short-term price forecasting dynamics using data from four different regions 
in the Swedish electricity market (SEM). More specifically, we utilized several forecasting 
approaches, ranging from standard conditional volatility models to wavelet-based 
forecasting, to investigate their performance and applicable conditions. In addition, we 
performed out-of-sample forecasting and back-testing and assessed  
the performance of these frameworks by utilizing the root mean squared error (rMSE) 
and symmetric mean absolute percentage error (sMAPE). Our results could provide 
guidelines for policy makers, operations managers, and investors related to the electricity 
market. 
The contribution of this study is twofold. First, to the best of our knowledge, this is the 
first study to incorporate multiresolution-wavelet-based decomposed series into OLS 
modeling to forecast electricity prices in the Swedish market context. This is essential to 
capture the hierarchical structure of the original time series and to obtain the optimal 
predictions at all levels. Second, the expansion of renewable electricity production in 
Norway and Sweden has led to increased volatility in electricity prices (Serinaldi 2011; 
Tang and Rehme 2017). The increased employment of renewables in electricity 
generation further necessitates the examination of forecasting performance due to 
abrupt adjustments in the electricity markets. 
Our empirical analysis suggests that the ARMA-GARCH models significantly outperform 
the other underlying models based on the rMSE and MAPE. Although we utilized the 
Student’s t-distribution to capture the prospective extreme movement, we gained no 
significant improvement by changing the marginal distributional framework. Furthermore, 
the wavelet-based forecasting framework only outperformed the MAPE framework. 
The remainder of this paper proceeds as follows. Section 2 presents an overview of the 
Swedish electricity market (SEM). Section 3 outlines the methodological frameworks that 
we employed. Section 4 provides the data and preliminary statistics. Section 5 discusses 
the empirical findings of this study. Finally, section 6 presents the concluding remarks 
and the implications of the findings. 

2. SWEDISH ELECTRICITY MARKET 
The electricity market clearing price is the junction between the supply curve and the 
demand curve, which the sell bids from generator companies and the buy bids from 
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retailers/buyers establish (Serinaldi 2011). For the Swedish market, this settlement price 
is based on the Nord Pool Elspot and Elbas (Pool 2018a, 2018b). The Nord Pool Elspot 
is the physical market that establishes short-term contracts based on the short-term 
available generation capacity and the forecasted demand for the next day. Elspot 
contains hourly contracts, 12–36 hours in advance every day, which it bases on seller 
participants’ operational generation capacities and buyer participants’ demand. This 
price is reliant on a number of factors, such as the hydro, wind, and cloud situations as 
well as the level of economic activity and the temperature (Barthelmie, Murray, and Pryor 
2008; Tande 2003). Elbas is an hour-ahead market for hourly contracts that adjusts the 
actual capacity and demand. Continuous contracts and the balancing market then 
resolve the final adjustment balancing, which is the responsibility of the transmission 
system operator (TSO). 
On the supply side, the volatility characteristics of new renewable electricity generation, 
such as wind and solar power, create additional challenges in balancing the electricity 
grid (Tande 2003; Tang and Rehme 2017). The larger the proportion of new intermittent 
renewable capacity that a power system has installed, the greater the uncertainty about 
the supply of electricity and consequently the price (Serinaldi 2011). Therefore, a robust 
forecast model for electricity prices performs an increasingly important role for both 
sellers and buyers in the electricity market (Barthelmie et al. 2008; Bowden and Payne 
2008; Serinaldi 2011). 
The electricity markets in essence balance the supply and demand with a) the day-ahead 
balance, the Elspot market and b) the hour-ahead balance, if something occurs, the 
Elbas market; c) during the operating hours, the TSO is responsible for the final balance 
to keep the frequency between 49.9. and 50.1 Hertz. A better forecast can aid in making 
this balancing more efficient but can also be beneficial for other operational aspects, 
such as planning the maintenance of wind power or gauging when to switch to hydrogen 
production instead of dispatching to the grid (Barthelmie et al. 2008; Tande 2003). 
Forecasts are more valuable when the balance markets are part of a competitive 
electricity trading system and not only treated with long-term bilateral contracts as such 
markets provide more financial incentives to generators and dealers for accurate 
production forecasts (Barthelmie et al. 2008). 

3. METHODOLOGY 
ARMA-GARCH forecasting models are able to capture serial correlation both in mean 
and in volatility equations and therefore provide a framework in which returns’ distribution 
of forecast. Including time dependency for returns’ first and second moments enables 
these models to estimate and preserve the effect of asymmetric shocks. Owing to the 
existence of autocorrelation, seasonality, and non-stationarity  
in electricity markets, ARMA-GARCH models are potentially suitable modeling 
approaches. However, the electricity markets also show non-linearity and complex 
behavior that can affect the forecast accuracy. Hence, we used wavelet analysis to 
transform the return series into details and smooths. This provides a forecasting 
procedure with a well-behaved decomposed series (Uddin et al. 2019; Zhang, Gençay, 
and Ege Yazgan 2017). We examined a wavelet-based approach for forecasting 
electricity market returns using multi-resolution analysis and ARMA-GARCH models. 

3.1 ARMA-GARCH Forecasting Models 
ARMA-GARCH models the expected returns through an autoregressive moving average 
process and derives them from a recursive heteroscedastic volatility process. Let 𝒓𝒓 =
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{𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑇𝑇} be the discrete return vector from the observed electricity market prices. 
The mean equation based on ARMA (𝑝𝑝, 𝑞𝑞) is  

𝑟𝑟𝑡𝑡 = 𝑐𝑐 + �𝜑𝜑𝑖𝑖𝑟𝑟𝑡𝑡−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+�𝜃𝜃𝑖𝑖𝜀𝜀𝑡𝑡−𝑖𝑖

𝑞𝑞

𝑖𝑖=1

+ 𝜀𝜀𝑡𝑡 (1) 

where 𝑐𝑐  represents the constant term, 𝜑𝜑𝑖𝑖  is the autoregressive coefficient and 
represents the effects from past observation, 𝜃𝜃𝑖𝑖 is the moving average component, and 
𝜀𝜀𝑡𝑡 corresponds to the error term. 
Assuming that the variance of the error term 𝜀𝜀𝑡𝑡 is not constant and homoscedastic, we 
used the standard GARCH ( 𝑝𝑝,𝑞𝑞 ) model, which captures time-varying conditional 
variance: 

𝜀𝜀𝑡𝑡 = ℎ𝑡𝑡
1/2𝑧𝑧𝑡𝑡 

𝑧𝑧𝑡𝑡 ≈ 𝑖𝑖. 𝑖𝑖.𝑑𝑑. 

ℎ𝑡𝑡 = 𝜔𝜔 + �𝛼𝛼𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝜀𝜀2𝑡𝑡−𝑖𝑖 + �𝛽𝛽𝑖𝑖

𝑞𝑞

𝑖𝑖=1

ℎ𝑡𝑡−𝑖𝑖 

(2) 

where 𝑧𝑧𝑡𝑡  is a vector of standardized residuals, ℎ𝑡𝑡  denotes the conditional variance at 
time 𝑡𝑡 ∈ {1,2, . . ,𝑇𝑇} , with parameter restrictions, 𝜔𝜔 > 0 , 𝛼𝛼𝑖𝑖 ≥ 0 , 𝛽𝛽𝑖𝑖 ≥ 0 , and ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 +

∑ 𝛽𝛽𝑖𝑖
𝑞𝑞
𝑖𝑖=1 < 1. As Engle and Bollerslev (1986) suggested, imposing ∑ 𝛼𝛼𝑖𝑖

𝑝𝑝
𝑖𝑖=1 + ∑ 𝛽𝛽𝑖𝑖

𝑞𝑞
𝑖𝑖=1 = 1 

results in the persistence of conditional variance forecasts in finite samples and infinite-
variance unconditional distribution. The authors referred to this framework as integrated 
GARCH (IGARCH), and it enables the modeling of conditional forecasts with persistent 
shocks. Glosten, Jagannathan, and Runkle (1993) introduced the GJR-GARCH model, 
which assumes that negative and positive shocks are asymmetric: 

ℎ𝑡𝑡 = 𝜔𝜔 + �(𝛼𝛼𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝜀𝜀2𝑡𝑡−𝑖𝑖 + 𝛾𝛾𝑖𝑖𝐼𝐼𝑡𝑡−𝑖𝑖𝜀𝜀2𝑡𝑡−𝑖𝑖) + �𝛽𝛽𝑖𝑖

𝑞𝑞

𝑖𝑖=1

ℎ𝑡𝑡−𝑖𝑖 (3) 

 where 𝛾𝛾𝑖𝑖  denotes the leverage parameter and  𝐼𝐼𝑡𝑡−𝑖𝑖 = {0: 𝜀𝜀𝑡𝑡 > 0,1: 𝜀𝜀𝑡𝑡 ≤ 0} . Hentschel 
(1995) demonstrated how to decompose the error terms in the variance equation. This 
decomposition includes different powers for the standardized residuals and conditional 
variance. Studies refer to this model as the family GARCH (FGARCH): 

ℎ𝑡𝑡 = 𝜔𝜔 + �𝛼𝛼𝑖𝑖

𝑝𝑝

𝑖𝑖=1

ℎ𝜆𝜆𝑡𝑡−𝑖𝑖[|𝑧𝑧𝑡𝑡−𝑖𝑖 − 𝜂𝜂1𝑖𝑖|− 𝜂𝜂1𝑖𝑖(𝑧𝑧𝑡𝑡−𝑖𝑖 − 𝜂𝜂2𝑖𝑖)]𝛿𝛿 +�𝛽𝛽𝑖𝑖

𝑞𝑞

𝑖𝑖=1

ℎ𝜆𝜆𝑡𝑡−𝑖𝑖 (4) 

where 𝜆𝜆 = 𝛿𝛿 results in the full FGARCH model. 
Another GARCH model is the component GARCH (CGARCH) that Engle and Lee (1999) 
suggested, which imposes the conditional variance that a permanent and transitory 
component drives. The CGARCH models short- and long-term volatility by introducing 
𝜗𝜗𝑡𝑡, a parameter that captures the permanent part of the conditional variance: 
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ℎ𝑡𝑡 = 𝜗𝜗𝑡𝑡 +�𝛼𝛼𝑖𝑖

𝑝𝑝

𝑖𝑖=1

(𝜀𝜀2𝑡𝑡−𝑖𝑖 − 𝜗𝜗𝑡𝑡−𝑖𝑖) + �𝛽𝛽𝑖𝑖

𝑞𝑞

𝑖𝑖=1

(ℎ𝑡𝑡−𝑖𝑖 − 𝜗𝜗𝑡𝑡−𝑖𝑖) 

𝜗𝜗𝑡𝑡 = 𝜔𝜔 + 𝜌𝜌𝜗𝜗𝑡𝑡−1 + 𝜙𝜙(𝜀𝜀2𝑡𝑡−𝑖𝑖 − ℎ𝑡𝑡−𝑖𝑖) 

(5) 

where 𝜌𝜌 is the first-order autoregressive coefficient for the time-varying intercept. 

3.2 Wavelet-Based ARMA-GARCH Forecasting Models 
To construct wavelet-based models, we combined multi-resolution analysis (MRA) with 
the ARMA-GARCH models and OLS regression. We utilized MRA to transform the 
returns into “details” and “smooths.” Utilizing the ARMA-GARCH model presented in 
section 3.1, Eq. (1)–(4), we obtained “first-round forecasts,” including step-ahead 
forecasts of the original and transformed series. Hyndman et al. (2011) and Zhang et al. 
(2017) indicated that it is possible to regard each variable at various scales as a linear 
mixture of the lowest-level variables. To preserve the hierarchical structure of the original 
signal and obtain the optimal projections for all the hierarchical layers, we followed Zhang 
et al. (2017) and regressed the first-round predictions on a “summing” matrix, which 
presents the linear relationship in the hierarchical structure. 
Using MRA for the training sample 𝑟𝑟𝑡𝑡, 𝑡𝑡 ∈ [1,𝑇𝑇], we obtained the wavelet details, 𝐷𝐷𝑗𝑗 ,𝑡𝑡, and 
smooths, 𝑆𝑆𝑗𝑗 ,𝑡𝑡. We used a maximal overlap discrete wavelet transform (MODWT) to obtain 
the 𝑗𝑗th-level MODWT wavelet 𝑊𝑊𝑗𝑗,𝑡𝑡 and scaling 𝑉𝑉𝑗𝑗  coefficients (Durai and Bhaduri 2009) 
as follows: 

𝑊𝑊𝑗𝑗,𝑡𝑡 = � 𝑘𝑘�𝑗𝑗,𝑙𝑙

𝐿𝐿1−𝑙𝑙

𝑙𝑙=0

𝑟𝑟𝑡𝑡−𝑙𝑙 mod 𝑁𝑁 𝑉𝑉𝑗𝑗 ,𝑡𝑡 = �𝑔𝑔�𝑗𝑗,𝑙𝑙

𝐿𝐿1−𝑙𝑙

𝑙𝑙=0

𝑟𝑟𝑡𝑡−𝑙𝑙 mod 𝑁𝑁 (6) 

𝐷𝐷𝑗𝑗 ,𝑡𝑡 = �𝑘𝑘�𝑗𝑗,𝑙𝑙

𝑁𝑁−𝑙𝑙

𝑙𝑙=0

𝑊𝑊𝑗𝑗,𝑡𝑡+𝑙𝑙 mod 𝑁𝑁 𝑆𝑆𝑗𝑗,𝑡𝑡 = �𝑔𝑔�𝑗𝑗,𝑙𝑙

𝑁𝑁−𝑙𝑙

𝑙𝑙=0

𝑉𝑉𝑗𝑗,𝑡𝑡+𝑙𝑙 mod 𝑁𝑁 (7) 

𝑟𝑟𝑡𝑡 = �𝐷𝐷𝑗𝑗 ,𝑡𝑡 + 𝑆𝑆𝑗𝑗,𝑡𝑡

𝐽𝐽

𝑗𝑗=1

 (8) 

where 𝑘𝑘�𝑗𝑗,𝑙𝑙 = 𝑘𝑘𝑗𝑗 ,𝑙𝑙/2𝑗𝑗/2  and 𝑔𝑔�𝑗𝑗,𝑙𝑙 = 𝑔𝑔𝑗𝑗,𝑙𝑙/2𝑗𝑗/2  denote the wavelet and scaling filters, 
respectively. 𝑗𝑗 ∈ [2, 𝐽𝐽] and 𝐽𝐽 is the decomposition level. We set 𝐽𝐽 = 2 and obtained the 
two-level MRA-wavelet-based transformed series, 𝐷𝐷𝑗𝑗,𝑡𝑡, and 𝑆𝑆𝑗𝑗,𝑡𝑡. We further utilized the 
ARMA-GARCH models that we presented above and obtained “first-round forecasts” 
𝑌𝑌�𝑇𝑇+ℎ = [�̂�𝑟𝑇𝑇+ℎ ,𝐷𝐷�1,𝑇𝑇+ℎ , 𝐷𝐷�2,𝑇𝑇+ℎ , �̂�𝑆1,𝑇𝑇+ℎ , �̂�𝑆2,𝑇𝑇+ℎ]′ for horizon ℎ. Following Zhang et al. (2017), 
we then created a “summing” matrix, 𝑍𝑍, with zero and one entries, which encapsulated 
the linear connection in the hierarchical structure. Contemplating the base-level 
variables, 𝛽𝛽𝑡𝑡 = [𝑆𝑆2,𝑡𝑡 ,𝐷𝐷2,𝑡𝑡 ,𝐷𝐷1,𝑡𝑡]′, we can convey the linear relationship as 
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𝑌𝑌𝑡𝑡 ≡

⎣
⎢
⎢
⎢
⎡
𝑟𝑟𝑡𝑡
𝑆𝑆1,𝑡𝑡
𝐷𝐷1,𝑡𝑡
𝑆𝑆𝐽𝐽 ,𝑡𝑡
𝐷𝐷𝐽𝐽 ,𝑡𝑡 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝑆𝑆2,𝑡𝑡 + 𝐷𝐷2,𝑡𝑡 + 𝐷𝐷1,𝑡𝑡

𝑆𝑆2,𝑡𝑡 + 𝐷𝐷2,𝑡𝑡
𝐷𝐷1,𝑡𝑡
𝑆𝑆2,𝑡𝑡
𝐷𝐷2,𝑡𝑡 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
1 1 1
1 1 0
0 0 1
1 0 0
0 1 0⎦

⎥
⎥
⎥
⎤
�
𝑆𝑆2,𝑡𝑡
𝐷𝐷2,𝑡𝑡
𝐷𝐷1,𝑡𝑡

� ≡ 𝑍𝑍𝛽𝛽𝑡𝑡 (9) 

Utilizing an OLS, we regressed the first-round forecasts 𝑌𝑌�𝑇𝑇+ℎ = [�̂�𝑟𝑇𝑇+ℎ ,𝐷𝐷�1,𝑇𝑇+ℎ , 𝐷𝐷�2,𝑇𝑇+ℎ ,
�̂�𝑆1,𝑇𝑇+ℎ , �̂�𝑆2,𝑇𝑇+ℎ]′ on the summing matrix 𝑍𝑍. This offered the optimal base-level forecasts 
𝛽𝛽�𝑇𝑇+ℎ = [�̃�𝑆2,𝑇𝑇+ℎ , 𝐷𝐷�2,𝑇𝑇+ℎ , 𝐷𝐷�1,𝑇𝑇+ℎ]′. By incorporating the optimal base-level forecasts from 
the OLS, we assessed the best possible forecasts at all the hierarchical levels: 

𝑌𝑌�𝑇𝑇+ℎ = 𝑍𝑍𝛽𝛽�𝑇𝑇+ℎ =

⎣
⎢
⎢
⎢
⎡
1 1 1
1 1 0
0 0 1
1 0 0
0 1 0⎦

⎥
⎥
⎥
⎤
�
�̃�𝑆2,𝑡𝑡

𝐷𝐷�2,𝑡𝑡

𝐷𝐷�1,𝑡𝑡

� =

⎣
⎢
⎢
⎢
⎢
⎡
�̂�𝑟𝑇𝑇+ℎ
�̃�𝑆1,𝑇𝑇+ℎ

𝐷𝐷�1,𝑇𝑇+ℎ

�̃�𝑆2,𝑇𝑇+ℎ

𝐷𝐷�2,𝑇𝑇+ℎ⎦
⎥
⎥
⎥
⎥
⎤

 (10) 

4. DATA AND SUMMARY STATISTICS 
This study analyzed SEM data that the authors obtained from Nord Pool. The data 
include the daily prices of four Swedish markets from 2 November 2011 to 17 October 
2019, resulting in 2076 daily returns. 

Table 1: Descriptive Statistics 
  NP1SEAV NP2SEAV NP3SEAV NP4SEAV 

Mean 0.002 0.002 0.012 0.003 
Std dev. 14.235 13.973 19.278 21.068 
Min. –120.91 –120.92 –183.47 –183.47 
Max. 102.6 102.6 233.43 238.46 
Skewness 0.17 –0.07 0.62 0.51 
Kurtosis 11.91 12.38 26.47 20.19 
J–B 12,306*** 13,297*** 60,866*** 35,429*** 
ARCH 317*** 374*** 206*** 210*** 
Q(10) 131*** 126*** 211*** 213*** 

Notes: This table provides descriptive statistics for the daily returns of four Swedish electricity markets. The total number 
of observations for each market is 2076. The sample period is from November 2, 2011 to October 17, 2019. JB is the 
result of the Jarque–Bera normality test. The table reports the test statistic for the Ljung–Box Q (with 10 lag) and ARCH 
(with 1 lag) tests. ***, **, and * denote significance at the 1%, 5%, and 10% level, respectively. 

Table 1 presents the descriptive statistics of the electricity market returns. It reports the 
highest average return (0.012%) for NP3SEAV and the highest volatility for NP4SEAV 
(21.07%). The table contains both the minimum and the maximum returns for NP3SEAV 
and NP4SEAV. However, the first two markets, NP1SEAV and NP2SEAV, show lower 
minimum and maximum returns. All the series report positive skewness except for 
NP2SEAV. According to positive kurtosis and the results of the Jarque–Bera normality 
test, all of the series follow a non-normal distribution. The significant statistics for Engle’s 
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ARCH test with one lag indicate the existence of ARCH effects and volatility clustering 
for all the series. Furthermore, the results of the Ljung–Box test with 10 lags suggest 
serial correlation for most of the series. These results indicate the possibility of using 
ARMA-GARCH models, which take advantage of existing serial correlation and ARCH 
effects for forecasting electricity market returns. 

5. EMPIRICAL ANALYSIS 
To assess the performance of the forecasting models, we forecast the one-step-ahead 
electricity market returns using rolling window estimation. We set the training sample 
size to 15, 30, and 50 days and forecast the market returns over the out-of-sample 
period. We then analyzed the forecasting models using the rMSE and sMAPE measures. 
The rMSE assumes a normal distribution for forecast errors and penalizes error variance 
by assigning more weights to larger errors. The sMAPE is a common accuracy measure 
when the relative error is of interest, particularly when forecasting returns, as these are 
relative values. Furthermore, we used paired t-tests and the Diebold–Mariano test 
(Diebold and Mariano 1995). The latter compared wavelet-based and simple forecasting 
models to understand better which frameworks are more appropriate for the Swedish 
electricity market. 

Table 2: Improvements in Forecast Accuracy 

Forecasting Model 

rMSE sMAPE 
NP1SEA

V 
NP2SEA

V 
NP3SEA

V 
NP4SEA

V 
NP1SEA

V 
NP2SEA

V 
NP3SEA

V 
NP4SEA

V 
Panel (A) Window Size = 15 Days 
MRA-AR 2.68 2.72 3.54 2.66 1.57 1.09 1.28 1.02 
MRA-ARMA 8.18 7.67 10.91 6.05 1.94 1.46 1.00 1.45 
MRA-ARMA-GARCH 2.88 2.86 2.38 2.52 0.77 0.55 1.01 1.40 
MRA-ARMA-IGARCH 3.02 3.19 3.28 3.15 0.20 0.06 0.87 0.39 
MRA-ARMA-
GJRGARCH 

2.36 2.62 2.42 2.99 1.09 1.14 0.69 0.71 

MRA-ARMA-FGARCH 2.89 2.90 2.26 2.00 0.79 0.51 1.17 1.61 
MRA-ARMA-CSGARCH 4.87 5.78 2.25 2.92 1.04 0.82 1.32 1.00 

Panel (B) Window Size = 30 Days 
MRA-AR –0.97 –0.57 15.14 16.19 1.77 1.40 1.22 0.33 
MRA-ARMA 1.79 2.39 22.17 21.74 0.87 0.77 1.43 0.80 
MRA-ARMA-GARCH –0.89 –0.36 15.07 9.43 –0.12 –0.02 –0.51 –0.75 
MRA-ARMA-IGARCH –0.97 –0.49 14.28 15.72 –0.68 –0.77 –0.80 –0.91 
MRA-ARMA-
GJRGARCH 

–1.76 –1.92 –2.93 –2.65 –0.05 –0.18 –1.29 –0.37 

MRA-ARMA-FGARCH –1.65 –1.84 –1.99 –1.75 0.30 0.35 –0.71 0.17 
MRA-ARMA-CSGARCH –0.62 –0.71 –2.08 –0.18 0.21 –0.01 0.40 0.00 

Panel (C) Window Size = 50 Days 
MRA-AR –2.63 –3.31 –0.62 –0.79 3.97 2.78 2.86 2.70 
MRA-ARMA –1.24 –2.24 0.63 0.33 0.95 0.22 1.18 –0.26 
MRA-ARMA-GARCH –3.40 –5.24 –2.63 –2.61 –0.13 0.15 –0.47 –1.65 
MRA-ARMA-IGARCH –2.31 –3.92 –2.53 –2.05 –0.35 0.03 –0.04 –2.10 
MRA-ARMA-
GJRGARCH 

–2.73 –3.77 –2.07 –2.37 –1.24 –0.34 –0.37 –2.06 

MRA-ARMA-FGARCH –3.21 –4.99 –2.44 –2.56 –0.08 0.21 –0.44 –1.69 
MRA-ARMA-CSGARCH 0.49 –0.27 –1.63 –1.84 0.43 0.32 –0.27 –1.49 

Note: This table provides improvements in the root mean squared error (rMSE) and symmetric mean absolute percentage 
error (sMAPE) for the Sweden Electricity Market data calculations, including daily returns. Each value represents the 
percentage change (reduction) in forecast accuracy from the wavelet-based forecasting model to its simple counterpart 
model. Panels A–C report the results based on 15, 30, and 50 days as training sample sizes. 
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Since the objective of this study was to examine and assess wavelet-based forecasting 
for Swedish electricity markets, we considered the improvements that we obtained from 
the ARMA-GARCH models based on MRA compared with the benchmarks, which are 
simple ARMA-GARCH models. To show improvements, we obtained forecast accuracy 
measures (rMSE and sMAPE) for each wavelet-based and simple forecasting model and 
computed the corresponding percentage change. We also used autoregressive (AR) and 
ARMA models with lag models. For the other models, we used lag 1 for the GARCH and 
ARCH terms. 

Table 3: Paired t-Test for Forecast Accuracy 

Forecasting Model 

rMSE sMAPE 
NP1SEA

V 
NP2SEA

V 
NP3SEA

V 
NP4SEA

V 
NP1SEA

V 
NP2SEA

V 
NP3SEA

V 
NP4SEA

V 
Panel (A) Window Size = 15 Days 
MRA-AR 1.17 1.13 1.53 1.32 2.21** 1.55 1.80* 1.46 
MRA-ARMA 2.35** 2.12** 2.73*** 2.71*** 2.34** 1.75* 1.17 1.69* 
MRA-ARMA-GARCH 2.16** 2.05** 1.51 1.65* 0.91 0.64 1.19 1.65* 
MRA-ARMA-IGARCH 2.10** 2.10** 1.74* 1.79* 0.25 0.07 1.07 0.47 
MRA-ARMA-
GJRGARCH 1.99** 1.99** 1.06 1.42 1.27 1.29 0.81 0.82 
MRA-ARMA-FGARCH 2.16** 2.08** 1.43 1.35 0.93 0.59 1.38 1.87* 
MRA-ARMA-CSGARCH 2.20** 2.51** 1.37 1.779* 1.23 0.96 1.57 1.18 
Panel (B) Window Size = 30 Days 
MRA-AR –1.01 –0.58 0.90 0.91 2.39** 1.85* 1.66* 0.46 
MRA-ARMA 1.53 1.97** 1.19 1.09 0.96 0.83 1.58 0.86 
MRA-ARMA-GARCH –0.91 –0.37 1.45 1.17 –0.13 –0.02 –0.56 –0.81 
MRA-ARMA-IGARCH –1.02 –0.53 0.99 1.02 –0.74 –0.85 –0.89 –1.00 
MRA-ARMA-
GJRGARCH –1.62 –1.67* –1.01 –1.00 –0.05 –0.19 –1.39 –0.39 
MRA-ARMA-FGARCH –1.36 –1.48 –1.47 –1.35 0.33 0.37 –0.77 0.18 
MRA-ARMA-CSGARCH –0.54 –0.68 –1.41 –0.16 0.22 –0.01 0.43 0.00 
Panel (C) Window Size = 50 Days 
MRA-AR –4.41*** –5.38*** –0.32 –0.49 5.10*** 3.47*** 3.52*** 3.39*** 
MRA-ARMA –1.18 –2.15** 0.28 0.17 0.98 0.23 1.24 –0.27 
MRA-ARMA-GARCH –2.22** –3.24*** –1.93* –2.07** –0.14 0.16 –0.52 –1.83* 
MRA-ARMA-IGARCH –1.88* –3.02*** –1.84* –1.42 –0.38 0.03 –0.05 –2.34** 
MRA-ARMA-
GJRGARCH –1.90* –2.50** –1.88* –2.15** –1.32 –0.36 –0.40 –2.27** 
MRA-ARMA-FGARCH –2.25** –3.32*** –1.83* –1.99** –0.09 0.22 –0.50 –1.87* 
MRA-ARMA-CSGARCH 0.50 –0.26 –1.18 –1.48 0.47 0.34 –0.30 –1.66* 

Note: This table provides test statistics for the difference in mean of forecast accuracy measures between simple 
forecasting models and wavelet-based models. For the rMSE (sMAPE), the null hypothesis is that the difference in the 
mean of squared errors (absolute percentage errors) is not greater than zero. *, **, and *** denote statistical significance 
at the 10%, 5%, and 1% level, respectively. 

Table 2 reports the improvements in the forecast accuracy measures. As we can see, 
there are gains from utilizing wavelet-based decomposition in forecasting electricity 
markets when the rolling window size is small (e.g., 15 days). According to Panel (A), all 
the MRA-based models outperformed the benchmarks in reducing the rMSE and 
sMAPE. For instance, considering NP1SEAV, there is an 8.18% (6.05%) improvement 
(decrease) in the rMSE (sMAPE). However, there are limited improvements from 
wavelet-based models when using longer horizon training sample sizes (30 and 
50 days). Panels (B) and (C) show improvements from MRA when using AR and ARMA 
models. In general, when using larger rolling window sizes and modeling the dynamics 
of conditional volatility with GARCH models, there are no gains from wavelet-based 
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decomposition in forecasting SEM. Table 3 presents the results of statistical significance 
in forecast accuracy improvements using the two-tailed paired t-test. 

Table 4: Diebold–Mariano Test for Wavelet-Based Models 

Forecasting Model MRA-AR 
MRA-
ARMA 

MRA-
ARMA-
GARCH 

MRA-
ARMA-

IGARCH 

MRA-
ARMA-

GJRGARCH 

MRA-
ARMA-

FGARCH 

MRA-
ARMA-

CSGARCH 
MRA-AR 0.00 –1.53 –2.20 –1.41 –2.22 –2.20 –2.34 
MRA-ARMA 1.53* 0.00 –1.06 –0.02 –1.03 –1.05 –1.12 
MRA-ARMA-GARCH 2.20** 1.06 0.00 1.47* –0.72 0.04 –0.70 
MRA-ARMA-IGARCH 1.41* 0.02 –1.47 0.00 –1.43 –1.46 –1.42 
MRA-ARMA-GJRGARCH 2.22** 1.03 0.72 1.43* 0.00 0.72 0.07 
MRA-ARMA-FGARCH 2.20** 1.05 –0.04 1.46* –0.72 0.00 –0.70 
MRA-ARMA-CSGARCH 2.34*** 1.12 0.70 1.42* –0.07 0.70 0.00 

Note: This table provides the Diebold–Mariano test statistics for improvements of forecast errors between the forecasting 
model in each row and the forecasting model in each column. We obtained the results using the daily returns of NP1SEAV 
and an estimation window of 15 days. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, 
respectively. 

Table 5: Diebold–Mariano Test for Simple Models 

Forecasting Model AR ARMA 
ARMA-
GARCH 

ARMA-
IGARCH 

ARMA-
GJRGARCH 

ARMA-
FGARCH 

ARMA-
CSGARCH 

AR 0.00 –0.55 –1.94 –2.19 –2.01 –1.96 –1.78 
ARMA 0.55 0.00 –1.68 –1.80 –1.56 –1.68 –1.51 
ARMA-GARCH 1.94** 1.68** 0.00 0.71 0.28 –0.81 0.88 
ARMA-IGARCH 2.19** 1.80** –0.71 0.00 –0.37 –0.79 –0.07 
ARMA-GJRGARCH 2.01** 1.56* –0.28 0.37 0.00 –0.38 0.38 
ARMA-FGARCH 1.96** 1.68** 0.81 0.79 0.38 0.00 0.98 
ARMA-CSGARCH 1.78** 1.50* –0.88 0.07 –0.38 –0.98 0.00 

Note: This table provides the Diebold–Mariano test statistics for improvements of forecast errors between the forecasting 
model in each row and the forecasting model in each column. We obtained the results using the daily returns of NP3SEAV 
and an estimation window of 50 days. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, 
respectively. 

Tables 4 and 5 provide the results of the Diebold–Mariano test for improvements  
in forecasting accuracies for the wavelet-based and simple models, respectively.  
All the forecasting models significantly outperform MRA-AR(1), which indicates the 
benefits of including the moving average term in the mean equation. In particular,  
the MRA-ARMA-CGARCH model achieves higher test statistics (2.341) and shows 
better outperformance of the MRA-AR than the other frameworks. This suggests the 
existence of permanent and transitory effects in the conditional volatility process.  
The results in Table 5 indicate that there are gains from modeling the dynamics of 
conditional volatility using GARCH models. All the simple ARMA-GARCH models 
perform better than both the AR and the ARMA model. This shows the presence of 
heteroscedasticity in the error terms. In addition, both Table 4 and Table 5 show that 
there is not much improvement from the different GARCH models. In general, these 
results for electricity markets indicate that the choice of variance equation does not result 
in a better point forecast for both wavelet-based and simple models. 
To summarize, our empirical analysis revealed four aspects of SEM forecasting. First, 
MRA and wavelet decomposition led to more accurate forecasts with smaller estimation 
windows. This result is applicable when fewer observations are available for forecasting. 
Second, in almost all cases, including the dynamics of conditional volatility produced 
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better forecasts. Third, there was not much improvement from changing the GARCH 
models. Finally, there were differences between the four Swedish districts in terms of 
forecasting one-day-ahead electricity prices. 

6. CONCLUSION AND IMPLICATIONS 
The forecasting of electricity prices is complex. In the increasingly competitive electricity 
market, forecasting the one-day-ahead prices is essential for all market participants. 
Accurate forecasting of such prices facilitates power suppliers’ modification of their 
bidding tactics and, in the meantime, enables consumers to devise a plan to hedge 
themselves against high prices. The non-storability characteristic of electricity hinders 
the exploitation of inventories to smooth supply and demand shocks, thereby causing 
increased uncertainty in electricity prices. Therefore, accurate price forecasting may 
enable electricity generators to allocate their resources optimally to manage the dynamic 
demand from various regions. 
Using data from four regions in the SEM, this study investigated and compared several 
short-term forecasting models. Our empirical analysis showed that the ARMA-GARCH 
models significantly outperformed the other frameworks when they used the rMSE and 
sMAPE as the performance measures. In addition, wavelet-based forecasting 
outperformed the sMAPE. The MRA-based models outperformed the benchmarks in 
reducing the rMSE and sMAPE in forecasting electricity prices when the rolling window 
size was small (e.g., 15 days). However, with longer horizon training sample sizes (30 
and 50 days), there were limited improvements from the wavelet-based models. 
The empirical findings are significant for policymakers, power suppliers, electricity 
generators, and general consumers. In particular, accurate forecasting may enable 
power generators to offset the uncertain demand and supply from different regions, 
which may eventually lead to a reduction in electricity prices’ variability. In addition, these 
findings are important with regard to the stability of grids and the economic profitability 
of market participants. Specifically, with a better understanding of the variations in 
electricity prices, grid operators may be better able to avoid the grid disparities that large 
variations in electricity prices exemplify. An improved understanding of accurate 
forecasting contributes significantly to the economic benefits of market agents. In 
addition, these findings are of significant interest for policymakers given the increased 
diversion of resources toward clean energy production. An accurate forecasting 
framework may enable policymakers to devise a roadmap for better integration of grid 
systems and electricity prices across different regions. This can lead to a decrease in the 
supply and demand disparity and eventually a reduction in the uncertainty of electricity 
prices. 
As understanding and capturing the price dynamics are important in the electricity 
market, the numerical results that the robust forecasting methods generated are capable 
of displaying the importance of a proper forecasting process design, policy implications 
for market efficiency, and predictability in SEM. Nevertheless, this study only focused on 
the data statistics of the electricity market and did not include the important operational 
factors, such as the profile of electricity production sources and seasonal influence. A 
combined method will be interesting for exploring the principal factors influencing 
electricity prices (compare Tande 2003; Barthelmie, Murray, and Pryor 2008). This also 
represents a direction for future research. 
  



ADBI Working Paper 1212 G. S. Uddin et al. 
 

11 
 

REFERENCES 
Aye, Goodness C., Mehmet Balcilar, Rangan Gupta, and Anandamayee Majumdar. 

2015. “Forecasting Aggregate Retail Sales: The Case of South Africa.” 
International Journal of Production Economics 160:66–79. 

Barthelmie, R. J., F. Murray, and S. C. Pryor. 2008. “The Economic Benefit of Short-
Term Forecasting for Wind Energy in the UK Electricity Market.” Energy Policy 
36(5):1687–96. 

Birkelund, Ole Henrik, Erik Haugom, Peter Molnár, Martin Opdal, and Sjur Westgaard. 
2015. “A Comparison of Implied and Realized Volatility in the Nordic Power 
Forward Market.” Energy Economics 48:288–94. 

Botterud, Audun, Tarjei Kristiansen, and Marija D. Ilic. 2010. “The Relationship 
between Spot and Futures Prices in the Nord Pool Electricity Market.” Energy 
Economics 32(5):967–78. 

Bowden, Nicholas, and James E. Payne. 2008. “Short Term Forecasting of Electricity 
Prices for MISO Hubs: Evidence from ARIMA-EGARCH Models.” Energy 
Economics 30(6):3186–97. 

Bruzda, Joanna. 2019. “Quantile Smoothing in Supply Chain and Logistics 
Forecasting.” International Journal of Production Economics 208:122–39. 

Bunn, Derek W., and Dipeng Chen. 2013. “The Forward Premium in Electricity 
Futures.” Journal of Empirical Finance 23:173–86. 

Charwand, Mansour, Mohsen Gitizadeh, and Pierluigi Siano. 2017. “A New Active 
Portfolio Risk Management for an Electricity Retailer Based on a Drawdown 
Risk Preference.” Energy 118:387–98. 

Danese, Pamela, and Matteo Kalchschmidt. 2011. “The Role of the Forecasting 
Process in Improving Forecast Accuracy and Operational Performance.” 
International Journal of Production Economics 131(1):204–14. 

Diebold, Francis X., and Roberto S. Mariano. 1995. “Comparing Predictive Accuracy.” 
Journal of Business and Economic Statistics 13(3):253–63. 

Durai, S. Raja Sethu, and Saumitra N. Bhaduri. 2009. “Stock Prices, Inflation and 
Output: Evidence from Wavelet Analysis.” Economic Modelling 26(5):1089–92. 

Eksoz, Can, S. Afshin Mansouri, and Michael Bourlakis. 2014. “Collaborative 
Forecasting in the Food Supply Chain: A Conceptual Framework.” International 
Journal of Production Economics 158:120–35. 

Engle, Robert F., and Gary Lee. 1999. “A Long-Run and Short-Run Component Model 
of Stock Return Volatility.” Pp. 475–97 in Cointegration, Causality, and 
Forecasting: A Festschrift in Honour of Clive W.J. Granger, edited by R. Engle 
and H. White. Oxford: Oxford University Press. 

Engle, Robert F., and Tim Bollerslev. 1986. “Modelling the Persistence of Conditional 
Variances.” Econometric Reviews 5(1):1–50. 

Fantazzini, Dean, and Zhamal Toktamysova. 2015. “Forecasting German Car Sales 
Using Google Data and Multivariate Models.” International Journal of Production 
Economics 170:97–135. 

  



ADBI Working Paper 1212 G. S. Uddin et al. 
 

12 
 

Ferbar Tratar, Liljana. 2015. “Forecasting Method for Noisy Demand.” International 
Journal of Production Economics 161:64–73. 

Furió, Dolores, and Helena Chuliá. 2012. “Price and Volatility Dynamics between 
Electricity and Fuel Costs: Some Evidence for Spain.” Energy Economics 
34(6):2058–65. 

Girish, G. P., Badri Narayan Rath, and Vaseem Akram. 2018. “Spot Electricity Price 
Discovery in Indian Electricity Market.” Renewable and Sustainable Energy 
Reviews 82:73–79. 

Glosten, Lawrence R., Ravi Jagannathan, and David E. Runkle. 1993. “On the Relation 
between the Expected Value and the Volatility of the Nominal Excess Return on 
Stocks.” The Journal of Finance. 

Hasni, M., M. S. Aguir, M. Z. Babai, and Z. Jemai. 2019. “On the Performance of 
Adjusted Bootstrapping Methods for Intermittent Demand Forecasting.” 
International Journal of Production Economics 216:145–53. 

Haugom, Erik, Sjur Westgaard, Per Bjarte Solibakke, and Gudbrand Lien. 2011. 
“Realized Volatility and the Influence of Market Measures on Predictability: 
Analysis of Nord Pool Forward Electricity Data.” Energy Economics  
33(6):1206–15. 

Hentschel, Ludger. 1995. “All in the Family Nesting Symmetric and Asymmetric 
GARCH Models.” Journal of Financial Economics 39(1):71–104. 

Hyndman, Rob J., Roman A. Ahmed, George Athanasopoulos, and Han Lin Shang. 
2011. “Optimal Combination Forecasts for Hierarchical Time Series.” 
Computational Statistics and Data Analysis 55(9):2579–89. 

Junttila, Juha, Valtteri Myllymäki, and Juhani Raatikainen. 2018. “Pricing of Electricity 
Futures Based on Locational Price Differences: The Case of Finland.” Energy 
Economics 71:222–37. 

Kalantzis, Fotis G., and Nikolaos T. Milonas. 2013. “Analyzing the Impact of Futures 
Trading on Spot Price Volatility: Evidence from the Spot Electricity Market in 
France and Germany.” Energy Economics 36:454–63. 

Le, Hong Lam, Valentin Ilea, and Cristian Bovo. 2019. “Integrated European Intra-Day 
Electricity Market: Rules, Modeling and Analysis.” Applied Energy 238:258–73. 

Liu, Heping, and Jing Shi. 2013. “Applying ARMA-GARCH Approaches to Forecasting 
Short-Term Electricity Prices.” Energy Economics 37:152–66. 

Loi, Tian Sheng Allan, and Gautam Jindal. 2019. “Electricity Market Deregulation in 
Singapore – Initial Assessment of Wholesale Prices.” Energy Policy 127:1–10. 

Lolli, F., R. Gamberini, A. Regattieri, E. Balugani, T. Gatos, and S. Gucci. 2017. 
“Single-Hidden Layer Neural Networks for Forecasting Intermittent Demand.” 
International Journal of Production Economics 183(October 2016):116–28. 

Mirza, Faisal Mehmood, and Olvar Bergland. 2012. “Pass-through of Wholesale Price 
to the End User Retail Price in the Norwegian Electricity Market.” Energy 
Economics 34(6):2003–12. 

Mjelde, James W., and David A. Bessler. 2009. “Market Integration among Electricity 
Markets and Their Major Fuel Source Markets.” Energy Economics  
31(3):482–91. 



ADBI Working Paper 1212 G. S. Uddin et al. 
 

13 
 

Mosquera-López, Stephanía, and Anjali Nursimulu. 2019. “Drivers of Electricity Price 
Dynamics: Comparative Analysis of Spot and Futures Markets.” Energy Policy 
126:76–87. 

Nakajima, Tadahiro, and Shigeyuki Hamori. 2013. “Testing Causal Relationships 
between Wholesale Electricity Prices and Primary Energy Prices.” Energy 
Policy 62:869–77. 

Nikolopoulos, Konstantinos I., M. Zied Babai, and Konstantinos Bozos. 2016. 
“Forecasting Supply Chain Sporadic Demand with Nearest Neighbor 
Approaches.” International Journal of Production Economics 177:139–48. 

Park, Haesun, James W. Mjelde, and David A. Bessler. 2006. “Price Dynamics among 
U.S. Electricity Spot Markets.” Energy Economics 28(1):81–101. 

Pool, Nord. 2018a. “Day-Ahead Market | Nord Pool.” Nordpool, Norway. Retrieved 
February 2, 2020 (https://www.nordpoolgroup.com/the-power-market/Day-
ahead-market/). 

———. 2018b. Nord Pool Annual Report. Lysaker, Norway. 
Rostami-Tabar, Bahman, Mohamed Zied Babai, Yves Ducq, and Aris Syntetos. 2015. 

“Non-Stationary Demand Forecasting by Cross-Sectional Aggregation.” 
International Journal of Production Economics 170:297–309. 

Serinaldi, Francesco. 2011. “Distributional Modeling and Short-Term Forecasting of 
Electricity Prices by Generalized Additive Models for Location, Scale and 
Shape.” Energy Economics 33(6):1216–26. 

Tande, John Olav Giæver. 2003. “Grid Integration of Wind Farms.” Wind Energy 
6(3):281–95. 

Tang, Ou, and Jakob Rehme. 2017. “An Investigation of Renewable Certificates Policy 
in Swedish Electricity Industry Using an Integrated System Dynamics Model.” 
International Journal of Production Economics 194:200–213. 

Tratar, Ferbar, Blaž Mojškerc, and Aleš Toman. 2016. “Demand Forecasting with  
Four-Parameter Exponential Smoothing.” International Journal of Production 
Economics 181:162–73. 

Uddin, Gazi Salah, Ramazan Gençay, Stelios Bekiros, and Maziar Sahamkhadam. 
2019. “Enhancing the Predictability of Crude Oil Markets with Hybrid Wavelet 
Approaches.” Economics Letters 182:50–54. 

Van Donselaar, K. H., J. Peters, A. De Jong, and R. A. C. M. Broekmeulen. 2016. 
“Analysis and Forecasting of Demand during Promotions for Perishable Items.” 
International Journal of Production Economics 172:65–75. 

Weron, Rafał, and Michał Zator. 2014. “Revisiting the Relationship between Spot and 
Futures Prices in the Nord Pool Electricity Market.” Energy Economics  
44:178–90. 

Zhang, Keyi, Ramazan Gençay, and M. Ege Yazgan. 2017. “Application of Wavelet 
Decomposition in Time-Series Forecasting.” Economics Letters 158:41–46. 

Zhu, Bangzhu, Shunxin Ye, Dong Han, Ping Wang, Kaijian He, Yi Ming Wei, and Rui 
Xie. 2019. “A Multiscale Analysis for Carbon Price Drivers.” Energy Economics 
78:202–16. 



ADBI Working Paper 1212 G. S. Uddin et al. 
 

14 
 

Zhu, Xiaowei, Samar K. Mukhopadhyay, and Xiaohang Yue. 2011. “Role of Forecast 
Effort on Supply Chain Profitability under Various Information Sharing 
Scenarios.” International Journal of Production Economics 129(2):284–91. 

Zhu, You, Li Zhou, Chi Xie, Gang Jin Wang, and Truong V Nguyen. 2019. “Forecasting 
SMEs’ Credit Risk in Supply Chain Finance with an Enhanced Hybrid Ensemble 
Machine Learning Approach.” International Journal of Production Economics 
211:22–33. 

  



ADBI Working Paper 1212 G. S. Uddin et al. 
 

15 
 

APPENDIX 

Table A1: Literature Review 
Authors Data Methods Results 
Mosquera-López and 
Nursimulu (2019) 

Spot and futures data of 
German electricity markets  
(daily data from 2010 to 
2017)  

Linear, non-linear, 
and threshold 
regression 

There are different time-varying 
short- and long-run price drivers. 
The electricity demand influences 
the spot market, while the gas, 
coal, and carbon prices affect the 
futures. 

B. Zhu et al. (2019) European data on carbon 
price, oil, coal, gas, 
electricity, STOXX, and 
GSCI (daily data from 2009 
to 2016) 

Multiscale 
decomposition, 
cointegration, and 
error correction 
model 

A long-term equilibrium 
relationship exists among carbon, 
coal, electricity, and the stock 
index. 
In the short run, the electricity and 
stock markets significantly affect 
the carbon market. 

Kalantzis and Milonas 
(2013) 

Electricity futures and spot 
prices of French and 
German electricity markets 
(daily data between 2002 
and 2011) 

Bivariate VECM-
GARCH model 

The introduction of futures lowers 
the spot price volatility in France. 
The German market dominates 
and leads the long-run 
relationship. 

Birkelund et al. (2015) Implied and realized volatility 
indexes in the Nordic power 
forward market (daily data 
between 2005 and 2011) 

Ordinary least 
squares (OLS) 

There is a positive volatility risk 
premium in options prices. 

Nakajima and Hamori 
(2013) 

Electricity, gas, and crude oil 
prices (daily data from 2005 
to 2009) 

Lag-augmented 
VAR, Granger 
causality, cross-
correlation 

Gas prices Granger-cause 
electricity prices in mean. 

Bunn and Chen (2013) Electricity spot and futures 
(daily data from 2007 to 
2010)  

MSVAR model Undertaking various regimes is 
important for forecasting. 

Botterud, Kristiansen, 
and Ilic (2010) 

Nord Pool electricity market 
spot and futures prices (daily 
data from 1996 to 2006) 

Regression analysis Differences between supply and 
demand explain the short-term 
price variation. 

Mjelde and Bessler 
(2009) 

US spot prices, natural gas, 
uranium, coal, and crude oil 
(weekly data from 2001 to 
2008) 

Cointegration 
analysis 

Contemporaneous peak electricity 
prices move natural gas prices. 
Fuel source markets are weakly 
exogenous in the long run. 

Charwand, Gitizadeh, 
and Siano (2017) 

Electricity retailers  SARIMA SARIMA helps the retailer to 
identify a procurement strategy 
and evaluate its policy against 
risk. 

Van Donselaar et al. 
(2016) 

Perishable items data from 
retailers 

Regression 
analysis, moving 
average forecast 

Modeling threshold and saturation 
effects leads to worse forecasting 
performance. 

Eksoz et al. (2014) Seasonal, perishable, 
promotional, and newly 
launched products 

Conceptual 
framework 

Forecasting strategies of 
manufacturers and retailers are 
fundamental to consensus 
forecasts. 
The forecast horizon and 
frequency should not be 
neglected. 

Ferbar Tratar, 
Mojškerc, and Toman 
(2016) 

M3 competition (quarterly 
and monthly) 

Four-parameter 
exponential 
smoothing 

Their proposed method produces 
a more accurate short-term out-of-
sample forecast. 

Loi and Jindal (2019) Wholesale and retail 
electricity prices in 
Singapore (daily data from 
2012 to 2017) 

ARIMA-GARCH Supply competition and retail 
liberalization led to a decrease in 
electricity prices. 

Aye et al. (2015) Aggregate retail sales 
(monthly data from 1970 to 
2012) 

Linear and non-
linear models, time 
recursion estimation 
schemes 

Combination forecast models 
provide better forecasts and are 
unaffected by business cycles and 
time horizons. 
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Table A1 continued 
Authors Data Methods Results 
Fantazzini and 
Toktamysova (2015) 

German car sales (monthly 
data from 2001 to 2014) 

Multivariate 
cointegration tests, 
VECMX, VAR, AR 

Multivariate models outperform the 
competing models in terms of 
forecast horizons. 

Ferbar Tratar (2015) Noisy demand data Multiplicative HW 
method, seasonal 
ARIMA 

HW methods (additive and 
multiplicative) are appropriate for 
demand with trend and 
seasonality.  

Y. Zhu et al. (2019) SMEs’ credit risk in supply 
chain finance (46 SMEs’ and 
7 enterprises’ data from 
2014 to 2015) 

Machine learning 
approaches 

Random subspace multiboosting 
has good performance in dealing 
with small samples. 

Nikolopoulos, Babai, 
and Bozos (2016) 

Supply chain sporadic 
demand data 

Nearest-neighbor 
approaches 

The nearest-neighbor approach 
picks up patterns in short series. 

Le, Ilea, and Bovo 
(2019) 

Case study Optimization model 
and network 
constraints 

The model can evaluate current 
and future integration. 

Rostami-Tabar et al. 
(2015) 

Demand dataset of 
European grocery stores 
(weekly data of 103 
observations) 

IMA and SES There is increased benefit 
resulting from cross-sectional 
forecasting in a non-stationary 
environment. 

Hasni et al. (2019) Demand information data of 
9000 stock-keeping units 
(monthly data with 84 
observations) 

Two bootstrapping 
methods 

The proposed adjusted methods 
result in higher service cost 
efficiency. 

Mirza and Bergland 
(2012) 

Wholesale electricity in the 
Norwegian electricity market 
(weekly data from 2000 to 
2010) 

Partial adjustment 
model 

Dominant retailers may be 
exercising power in the retail 
electricity market. 

Furió and Chuliá 
(2012) 

Spanish electricity, crude oil, 
and natural gas forward 
market  

VECM-MGARCH Crude oil and natural gas forward 
prices play a prominent role in the 
Spanish electricity price. 
Causation flow from crude oil and 
natural gas forward markets to the 
Spanish electricity forward market. 

Park, Mjelde, and 
Bessler (2006) 

11 US spot market electricity 
prices (daily data between 
1998 and 2002) 

VAR A time-varying relationship exists 
among assets. 
The separations among markets 
disappear in longer time frames. 

Junttila, Myllymäki, 
and Raatikainen 
(2018) 

Finnish electricity futures 
(monthly data from 2006 to 
2016) 

OLS, VAR, Granger 
causality 

There is a significant positive 
excess futures premium in the 
Finnish market. 
The speculative and hedging-
based strategy is increasing in the 
Nordic markets. 

Bruzda (2019) Monthly, quarterly, and 
annual sales data from M3 
forecast competition 

Quantile smoothing The suggested procedure leads to 
a better quantile forecast of 
logistic data. 
Conditional median and mean 
modeling is able to provide the 
best forecasting in time series 
data. 

Haugom et al. (2011) Daily data of the Nord Pool 
electricity forward market 

OLS There is a strong degree of 
persistence in realized volatility 
and a significant impact of market 
measures in predicting. 

Weron and Zator 
(2014) 

Spot and futures prices in 
the Nord Pool electricity 
market (weekly data from 
1998 to 2010) 

Regression models 
with GARCH 
residuals 

The impact of the water reservoir 
level on the risk premium is 
positive. 

Zhu, Mukhopadhyay, 
and Yue (2011) 

Single selling season 
manufacturers 

Different forecast 
scenarios 

Forecast accuracy is costly. 

continued on next page 
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Table A1 continued 
Authors Data Methods Results 
Lolli et al. (2017) Intermittent demand 

forecasting 
Single-layer neural 
network 

The employed framework provides 
superior performance in terms of 
back-propagation. 
The forecast accuracy of the 
models doubled with the 
augmentation of increased 
frequency horizons. 

Girish, Rath, and 
Akram (2018) 

Spot electricity prices in the 
Indian electricity sector 
(hourly price data from 2014 
to 2015) 

Granger causality 
and VAR model 

No causality exists among the 
electricity markets. 
Short- and long-run causality 
exists between peak and off-peak 
prices. 

Serinaldi (2011) Electricity markets (CalPX 
and IPEX) 

GAMLSS The GAMLSS framework is a 
flexible alternative to various linear 
and nonlinear stochastic models. 

Tang and Rehme 
(2017) 

Swedish electricity industry System dynamic 
approach 

There is complex and nonlinear 
interaction of various factors in the 
electricity sector. 
Energy policy should incorporate 
incentives to use renewables with 
other decisions. 

Bowden and Payne 
(2008) 

MISO hubs ARIMA-EGARCH The model demonstrates the 
presence of an inverse leverage 
effect in electricity prices. 
ARIMA-EGARCH-M outperforms 
in terms of out-of-sample 
forecasting.  

Tande (2003) Wind farms Grid integration The use of reactive compensation 
may relax the short-term voltage 
and allow the integration of wind 
power. 

Danese and 
Kalchschmidt (2011) 

343 manufacturing firms 
from six different regions 

Hierarchical 
regression 

The structured forecasting process 
can improve the operational 
performance. 

Notes: Generalized autoregressive conditional heteroscedasticity (GARCH), vector error correction model (VECM), 
Markov switching vector autoregressive (MSVAR), seasonal autoregressive integrated moving average (SARIMA),  
non-stationary integrated moving average (IMA), single exponential smoothing (SES), generalized additive models for 
location, shape, and scale (GAMLSS), California Power Exchange (CalPX), Italian Power Exchange (IPEX), and Midwest 
Independent System Operator (MISO). 
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